[2] Axelsson, O., Barker, V. A.:
Finite element solution of boundary value problems, theory and computations. Academic Press, Orlando, FL, 1984.
MR 0758437
[5] Brandts, J., Křížek, M.: Padesát let metody konjugovaných gradienů aneb zvládnou počítače soustavy miliónů rovnic o miliónech neznámých?. Pokroky Mat. Fyz. Astronom. 47 (2002), 103–113.
[6] Brezinski, C.:
History of continued fractions and Padé approximants. Springer Series in Computational Mathematics, vol. 12. Springer-Verlag, Berlin, 1991.
MR 1083352
[7] Carson, E., Rozložník, M., Strakoš, Z., Tichý, P., Tůma, M.:
The numerical stability analysis of pipelined conjugate gradient methods: historical context and methodology. SIAM J. Sci. Comput. 40 (2018), A3549–A3580.
DOI 10.1137/16M1103361 |
MR 3866570
[8] Carson, E., Strakoš, Z.:
On the cost of iterative computations. Philos. Trans. Roy. Soc. A 378 (2020).
MR 4072455
[9] Concus, P., Golub, G. H., O'Leary, D. P.:
A generalized conjugate gradient method for the numerical solution of elliptic partial differential equations. In: Bunch, J. R., Rose, D. J.: Sparse Matrix Computations, Academic Press, New York, 2018, 309–332.
MR 0501821
[11] Duintjer Tebbens, J., Hnětynková, I., Plešinger, M., Strakoš, Z., Tichý, P.: Analýza metod pro maticové výpočty – základní metody. MatfyzPress, Praha, 2012.
[12] Engeli, M., Ginsburg, T., Rutishauser, H., Stiefel, E.:
Refined iterative methods for computation of the solution and the eigenvalues of self-adjoint boundary value problems. Mitt. Inst. Angew. Math. Zürich 8, Birkhäuser, Basel, 1959.
MR 0145689
[13] Fischer, B.:
Polynomial based iteration methods for symmetric linear systems. Wiley-Teubner Series Advances in Numerical Mathematics, John Wiley and Sons, Chichester, 1996.
MR 1449136
[14] Gergelits, T., Mardal, K.-A., Nielsen, B. F., Strakoš, Z.:
Laplacian preconditioning of elliptic PDEs: Localization of the eigenvalues of the discretized operator. SIAM J. Numer. Anal. 57 (2019), 1369–1394.
DOI 10.1137/18M1212458 |
MR 3961990
[15] Gergelits, T., Nielsen, B. F., Strakoš, Z.:
Generalized spectrum of second order differential operators. SIAM J. Numer. Anal. 58 (2020), 2193–2211.
DOI 10.1137/20M1316159 |
MR 4128499
[16] Gergelits, T., Strakoš, Z.:
Composite convergence bounds based on Chebyshev polynomials and finite precision conjugate gradient computations. Numer. Algorithms 65 (2014), 759–782.
DOI 10.1007/s11075-013-9713-z |
MR 3187962
[18] Greenbaum, A.:
Iterative methods for solving linear systems. Frontiers in Applied Mathematics, vol. 17. SIAM, Philadelphia, PA, 1997.
MR 1474725
[20] Greenbaum, A., Strakoš, Z.:
Predicting the behavior of finite precision Lanczos and conjugate gradient computations. SIAM J. Matrix Anal. Appl. 13 (1992), 121–137.
DOI 10.1137/0613011 |
MR 1146656
[21] Greenbaum, A., Strakoš, Z.:
Matrices that generate the same Krylov residual spaces. In: Recent advances in iterative methods. IMA Vol. Math. Appl., vol. 60. Springer, New York, 1994, 95–118.
MR 1332745
[22] Hayes, R. M.: Iterative methods for solving linear problems in Hilbert space. PhD. Thesis. Univ. of California at Los Angeles, 1954.
[25] Lanczos, C.:
An iteration method for the solution of the eigenvalue problem of linear differential and integral operators. J. Research Nat. Bur. Standards 45 (1950), 255–282.
DOI 10.6028/jres.045.026 |
MR 0042791
[26] Lanczos, C.:
Solution of systems of linear equations by minimized iterations. J. Research Nat. Bur. Standards 49 (1952), 33–53.
DOI 10.6028/jres.049.006 |
MR 0051583
[27] Lanczos, C.:
Chebyshev polynomials in the solution of large-scale linear systems. In: Proceedings of the Association for Computing Machinery, Toronto, 1952, Sauls Lithograph Co., Washington, DC, 1953, 124–133.
MR 0067580
[28] Lanczos, C.: Why Mathematics?. Lecture given at the Annual Meeting of the Irish Mathematical Association on October 31, 1966, at Belfield, Dublin.
[29] Liesen, J., Strakoš, Z.:
Krylov subspace methods: Principles and analysis. Oxford University Press, Oxford, 2013.
MR 3024841
[30] Ljusternik, L. A.:
Solution of problems in linear algebra by the method of continued fractions. Trudy Voronezh. Gos. Inst., Voronezh 2 (1956), 85–90.
MR 0084856
[31] Málek, J., Strakoš, Z.:
Preconditioning and the conjugate gradient method in the context of solving PDEs. SIAM Spotlights, vol. 1. SIAM, Philadelphia, PA, 2015.
MR 3307335
[35] Pearson, J. W., Pestana, J.: Preconditioned iterative methods for scientific applications. GAMM-Mitt., to appear (2020).
[37] Reid, J. K.:
On the method of conjugate gradients for the solution of large sparse systems of linear equations. In: Large sparse sets of linear equations, Proc. Conf., St. Catherine’s Coll., Oxford, 1970, Academic Press, London, 1971, 231–254.
MR 0341836
[38] Rektorys, K.:
Variační metody v inženýrských problémech a v problémech matematické fyziky. SNTL, Praha, 1974.
MR 0487652
[39] Saad, Y.:
Iterative methods for sparse linear systems. 2nd ed., SIAM, Philadelphia, PA, 2003.
MR 1990645
[40] Stieltjes, T. J.:
Recherches sur les fractions continues. Ann. Fac. Sci. Toulouse Sci. Math. Sci. Phys. 8 (1894), J. 1–122. Reprinted in Oeuvres II (P. Noordhoff, Groningen, 1918), 402–566. English translation Investigations on continued fractions. in Thomas Jan Stieltjes, Collected Papers, Vol. II, Springer-Verlag, Berlin, 1993, 609–745.
MR 1508159
[41] Strakoš, Z., Tichý, P.:
On error estimation in the conjugate gradient method and why it works in finite precision computations. Electron. Trans. Numer. Anal. 13 (2002), 56–80.
MR 1943611
[43] Vorobyev, Yu. V.:
Methods of moments in applied mathematics. Translated from the Russian original published in 1958 by Bernard Seckler, Gordon and Breach Science Publishers, New York, 1965.
MR 0184400
[44] van der Vorst, H. A.: Preconditioning by incomplete decompositions. PhD Thesis. University of Utrecht, 1982.
[46] Zeidler, E.:
Oxford users' guide to mathematics. Oxford University Press, Oxford, 2004. Translated from the 1996 German original by Bruce Hunt.
MR 3157455