[3] Amiri, H., Schmeding, A.:
Linking Lie groupoid representations and representations of infinite-dimensional Lie groups. 2018.
MR 3951756
[4] Amiri, H., Schmeding, A.:
A differentiable monoid of smooth maps on Lie groupoids. J. Lie Theory 29 (4) (2019), 1167–1192.
MR 4022150
[5] Bastiani, A.:
Applications différentiables et variétés différentiables de dimension infinie. J. Analyse Math. 13 (1964), 1–114. MR 0177277
DOI 10.1007/BF02786619 |
MR 0177277
[6] Beltiţă, D., Goliński, T., Jakimowicz, G., Pelletier, F.:
Banach-Lie groupoids and generalized inversion. J. Funct. Anal. 276 (5) (2019), 1528–1574.
DOI 10.1016/j.jfa.2018.12.002 |
MR 3912784
[10] Coufal, V., Pronk, D., Rovi, C., Scull, L., Thatcher, C.:
Orbispaces and their mapping spaces via groupoids: a categorical approach. Women in topology: collaborations in homotopy theory, Contemp. Math., vol. 641, Amer. Math. Soc., Providence, RI, 2015, pp. 135–166. MR 3380073 DOI:
http://dx.doi.org/10.1090/conm/641/12857 DOI 10.1090/conm/641/12857 |
MR 3380073
[12] Dahmen, R., Glöckner, H., Schmeding, A.: Complexifications of infinite-dimensional manifolds and new constructions of infinite-dimensional Lie groups. 2016.
[14] Engelking, R.:
General Topology. Sigma Series in Pure Mathematics, vol. 6, Heldermann, Berlin, 1989.
MR 1039321 |
Zbl 0684.54001
[15] Glöckner, H.:
Infinite-dimensional Lie groups without completeness restrictions. Geometry and Analysis on Lie Groups (Strasburger, A., Hilgert, J., Neeb, K.-H., Wojtyński, W., eds.), Banach Center Publication, vol. 55, Warsaw, 2002, pp. 43–59.
MR 1911979
[17] Glöckner, H.: Regularity properties of infinite-dimensional Lie groups, and semiregularity. 2015.
[18] Glöckner, H.: Fundamentals of submersions and immersions between infinite-dimensional manifolds. 2016.
[19] Glöckner, H., Neeb, K.-H.: Infinite-dimensional Lie groups. book in preparation.
[24] Keller, H.H.:
Differential calculus in locally convex spaces. Lecture Notes in Math., Vol. 417, Springer-Verlag, Berlin-New York, 1974. MR 0440592 (55 #13466)
MR 0440592 |
Zbl 0293.58001
[25] Kriegl, A., Michor, P.W.:
The Convenient Setting of Global Analysis. Mathematical Surveys and Monographs 53, Amer. Math. Soc., Providence R.I., 1997.
MR 1471480 |
Zbl 0889.58001
[26] Lang, S.:
Fundamentals of Differential Geometry. Graduate texts in mathematics 191, Springer, New York, $^2$2001.
MR 1666820
[29] Meinrencken, E.: Lie Groupoids and Lie algebroids. Lecture notes Fall 2017.
[30] Meyer, R., Zhu, Ch.:
Groupoids in categories with pretopology. Theory Appl. Categ. 30 (2015), Paper No. 55, 1906–1998. MR 3438234
MR 3438234
[31] Michor, P.W.:
Manifolds of Differentiable Mappings. Shiva Mathematics Series, vol. 3, Shiva Publishing Ltd., Nantwich, 1980. MR MR583436 (83g:58009)
MR 0583436 |
Zbl 0433.58001
[32] Milnor, J.:
Remarks on infinite-dimensional Lie groups. Relativity, Groups and Topology, II (Les Houches, 1983), North-Holland, Amsterdam, 1984, pp. 1007–1057. MR MR830252 (87g:22024)
MR 0830252 |
Zbl 0594.22009
[37] Palais, R.S.:
Foundations of global non-linear analysis. W.A. Benjamin, Inc., New York-Amsterdam, 1968. MR 0248880
MR 0248880
[40] Pressley, A., Segal, G.:
Loop groups. Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1986, Oxford Science Publications. MR 900587
MR 0900587
[41] Roberts, D.M., Schmeding, A.: Extending Whitney’s extension theorem: nonlinear function spaces. to appear in Annales de l'Institut Fourier, 2018.
[42] Roberts, D.M., Vozzo, R.F.:
Smooth loop stacks of differentiable stacks and gerbes. Cah. Topol. Géom. Différ. Catég. 59 (2018), no. 2, 95–141. MR 3727316
MR 3727316
[43] Roberts, D.M., Vozzo, R.F.:
The smooth Hom-stack of an orbifold. 2016 MATRIX annals, MATRIX Book Ser., vol. 1, Springer, Cham, 2018, pp. 43–47. MR 3792515
MR 3792515