[2] Bao, D., Chern, S.-S., Shen, Z.:
An Introduction to Riemann-Finsler Geometry. Springer Science+Business Media, New York, 2000.
MR 1747675 |
Zbl 0954.53001
[4] Berndt, J., Tricerri, F., Vanhecke, L.:
Generalized Heisenberg groups and Damek-Ricci harmonic spaces. Lecture Notes in Math., vol. 1598, Springer-Verlag, Berlin-Heidelberg-New York, 1995.
MR 1340192
[5] Deng, S.:
Homogeneous Finsler Spaces. Springer Science+Business Media, New York, 2012.
MR 2962626
[6] Dušek, Z.:
Explicit geodesic graphs on some H-type groups. Rend. Circ. Mat. Palermo, Serie II, Suppl. 69 (2002), 77–88.
MR 1972426
[7] Dušek, Z.:
Structure of geodesics in the flag manifold ${\rm SO}(7)/{\rm U}(3)$. Differential Geometry and its Applications, Proc. 10th Int. Conf. (Kowalski, O., Krupka, D., Krupková, O., Slovák, J., eds.), World Scientific, 2008, pp. 89–98.
MR 2463742
[8] Dušek, Z.:
Homogeneous geodesics and g.o. manifolds. Note Mat. 38 (2018), 1–15.
MR 3809649
[9] Dušek, Z.:
Geodesic graphs in Randers g.o. spaces. Comment. Math. Univ. Carolin. 61 (2) (2020), 195–211.
MR 4143705
[12] Kowalski, O., Nikčević, S.:
On geodesic graphs of Riemannian g.o. spaces. Arch. Math. 73 (1999), 223–234, Appendix: Arch. Math. 79 (2002), 158–160.
DOI 10.1007/s000130050032 |
MR 1924152
[13] Kowalski, O., Vanhecke, L.:
Riemannian manifolds with homogeneous geodesics. Boll. Un. Math. Ital. B(7) 5 (1991), 189–246.
MR 1110676 |
Zbl 0731.53046
[17] Riehm, C.:
Explicit spin representations and Lie algebras of Heisenberg type. J. London Math. Soc. (2) 32 (1985), 265–271.
MR 0734990
[18] Szenthe, J.:
Sur la connection naturelle à torsion nulle. Acta Sci. Math. (Szeged) 38 (1976), 383–398.
MR 0431042