Previous |  Up |  Next

Article

Keywords:
Finsler space; weakly symmetric space; g.o. space; homogeneous geodesic; geodesic graph
Summary:
Structure of geodesic graphs in special families of invariant weakly symmetric Finsler metrics on modified H-type groups is investigated. Geodesic graphs on modified H-type groups with the center of dimension $1$ or $2$ are constructed. The new patterns of algebraic complexity of geodesic graphs are observed.
References:
[1] Alekseevsky, D., Arvanitoyeorgos, A.: Riemannian flag manifolds with homogeneous geodesics. Trans. Amer. Math. Soc. 359 (2007), 3769–3789. DOI 10.1090/S0002-9947-07-04277-8 | MR 2302514 | Zbl 1148.53038
[2] Bao, D., Chern, S.-S., Shen, Z.: An Introduction to Riemann-Finsler Geometry. Springer Science+Business Media, New York, 2000. MR 1747675 | Zbl 0954.53001
[3] Berndt, J., Kowalski, O., Vanhecke, L.: Geodesics in weakly symmetric spaces. Ann. Glob. Anal. Geom. 15 (1997), 153–156. DOI 10.1023/A:1006565909527 | MR 1448722
[4] Berndt, J., Tricerri, F., Vanhecke, L.: Generalized Heisenberg groups and Damek-Ricci harmonic spaces. Lecture Notes in Math., vol. 1598, Springer-Verlag, Berlin-Heidelberg-New York, 1995. MR 1340192
[5] Deng, S.: Homogeneous Finsler Spaces. Springer Science+Business Media, New York, 2012. MR 2962626
[6] Dušek, Z.: Explicit geodesic graphs on some H-type groups. Rend. Circ. Mat. Palermo, Serie II, Suppl. 69 (2002), 77–88. MR 1972426
[7] Dušek, Z.: Structure of geodesics in the flag manifold ${\rm SO}(7)/{\rm U}(3)$. Differential Geometry and its Applications, Proc. 10th Int. Conf. (Kowalski, O., Krupka, D., Krupková, O., Slovák, J., eds.), World Scientific, 2008, pp. 89–98. MR 2463742
[8] Dušek, Z.: Homogeneous geodesics and g.o. manifolds. Note Mat. 38 (2018), 1–15. MR 3809649
[9] Dušek, Z.: Geodesic graphs in Randers g.o. spaces. Comment. Math. Univ. Carolin. 61 (2) (2020), 195–211. MR 4143705
[10] Dušek, Z., Kowalski, O.: Geodesic graphs on the $13$-dimensional group of Heisenberg type. Math. Nachr. 254–255 (2003), 87–96. DOI 10.1002/mana.200310054 | MR 1983957
[11] Gordon, C.S., Nikonorov, Yu.G.: Geodesic orbit Riemannian structures on $\mathbb{R}^n$. J. Geom. Phys. 134 (2018), 235–243. DOI 10.1016/j.geomphys.2018.08.018 | MR 3886938
[12] Kowalski, O., Nikčević, S.: On geodesic graphs of Riemannian g.o. spaces. Arch. Math. 73 (1999), 223–234, Appendix: Arch. Math. 79 (2002), 158–160. DOI 10.1007/s000130050032 | MR 1924152
[13] Kowalski, O., Vanhecke, L.: Riemannian manifolds with homogeneous geodesics. Boll. Un. Math. Ital. B(7) 5 (1991), 189–246. MR 1110676 | Zbl 0731.53046
[14] Latifi, D.: Homogeneous geodesics in homogeneous Finsler spaces. J. Geom. Phys. 57 (2007), 1421–1433. DOI 10.1016/j.geomphys.2006.11.004 | MR 2289656
[15] Lauret, J.: Modified H-type groups and symmetric-like Riemannian spaces. Differential Geom. Appl. 10 (1999), 121–143. DOI 10.1016/S0926-2245(99)00002-9 | MR 1669469
[17] Riehm, C.: Explicit spin representations and Lie algebras of Heisenberg type. J. London Math. Soc. (2) 32 (1985), 265–271. MR 0734990
[18] Szenthe, J.: Sur la connection naturelle à torsion nulle. Acta Sci. Math. (Szeged) 38 (1976), 383–398. MR 0431042
[19] Yan, Z., Deng, S.: Finsler spaces whose geodesics are orbits. Differential Geom. Appl. 36 (2014), 1–23. DOI 10.1016/j.difgeo.2014.06.006 | MR 3262894
Partner of
EuDML logo