Title:
|
Generalized symmetry classes of tensors (English) |
Author:
|
Rafatneshan, Gholamreza |
Author:
|
Zamani, Yousef |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
70 |
Issue:
|
4 |
Year:
|
2020 |
Pages:
|
921-933 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Let $V$ be a unitary space. For an arbitrary subgroup $G$ of the full symmetric group $S_{m}$ and an arbitrary irreducible unitary representation $\Lambda $ of $G$, we study the generalized symmetry class of tensors over $V$ associated with $G$ and $\Lambda $. Some important properties of this vector space are investigated. (English) |
Keyword:
|
irreducible character |
Keyword:
|
generalized Schur function |
Keyword:
|
orthogonal basis |
Keyword:
|
symmetry class of tensors |
MSC:
|
15A69 |
MSC:
|
20C30 |
idZBL:
|
07285970 |
idMR:
|
MR4181787 |
DOI:
|
10.21136/CMJ.2020.0044-19 |
. |
Date available:
|
2020-11-18T09:41:45Z |
Last updated:
|
2023-01-02 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/148402 |
. |
Reference:
|
[1] Babaei, E., Zamani, Y.: Symmetry classes of polynomials associated with the dihedral group.Bull. Iran. Math. Soc. 40 (2014), 863-874. Zbl 1338.05271, MR 3255403 |
Reference:
|
[2] Babaei, E., Zamani, Y.: Symmetry classes of polynomials associated with the direct product of permutation groups.Int. J. Group Theory 3 (2014), 63-69. Zbl 1330.05159, MR 3213989, 10.22108/ijgt.2014.5479 |
Reference:
|
[3] Babaei, E., Zamani, Y., Shahryari, M.: Symmetry classes of polynomials.Commun. Algebra 44 (2016), 1514-1530. Zbl 1338.05272, MR 3473866, 10.1080/00927872.2015.1027357 |
Reference:
|
[4] Darafsheh, M. R., Pournaki, M. R.: On the orthogonal basis of the symmetry classes of tensors associated with the dicyclic group.Linear Multilinear Algebra 47 (2000), 137-149. Zbl 0964.20006, MR 1760506, 10.1080/03081080008818639 |
Reference:
|
[5] Silva, J. A. Dias da, Torres, M. M.: On the orthogonal dimensions of orbital sets.Linear Algebra Appl. 401 (2005), 77-107. Zbl 1077.15025, MR 2133276, 10.1016/j.laa.2003.11.005 |
Reference:
|
[6] Gong, M.-P.: Generalized symmetric tensors and related topics.Linear Algebra Appl. 236 (1996), 113-129. Zbl 0846.15012, MR 1375609, 10.1016/0024-3795(94)00136-7 |
Reference:
|
[7] Holmes, R. R., Kodithuwakku, A.: Orthogonal bases of Brauer symmetry classes of tensors for the dihedral group.Linear Multilinear Algebra 61 (2013), 1136-1147. Zbl 1279.15021, MR 3175352, 10.1080/03081087.2012.729583 |
Reference:
|
[8] Lei, T.-G.: Generalized Schur functions and generalized decomposable symmetric tensors.Linear Algebra Appl. 263 (1997), 311-332. Zbl 0894.15015, MR 1453977, 10.1016/S0024-3795(96)00542-3 |
Reference:
|
[9] Marcus, M.: Finite Dimensional Multilinear Algebra. Part I.Pure and Applied Mathematics 23, Marcel Dekker, New York (1973). Zbl 0284.15024, MR 0352112 |
Reference:
|
[10] Merris, R.: Multilinear Algebra.Algebra, Logic and Applications 8, Gordon and Breach, Langhorne (1997). Zbl 0892.15020, MR 1475219, 10.1201/9781498714907 |
Reference:
|
[11] Ranjbari, M., Zamani, Y.: Induced operators on symmetry classes of polynomials.Int. J. Group Theory 6 (2017), 21-35. MR 3621030, 10.22108/ijgt.2017.12406 |
Reference:
|
[12] Shahryari, M.: On the orthogonal bases of symmetry classes.J. Algebra 220 (1999), 327-332. Zbl 0935.15024, MR 1714132, 10.1006/jabr.1999.7932 |
Reference:
|
[13] Shahryari, M., Zamani, Y.: Symmetry classes of tensors associated with Young subgroups.Asian-Eur. J. Math. 4 (2011), 179-185. Zbl 1211.15034, MR 2775162, 10.1142/S1793557111000150 |
Reference:
|
[14] Zamani, Y.: On the special basis of a certain full symmetry class of tensors.PU.M.A., Pure Math. Appl. 18 (2007), 357-363. Zbl 1212.15053, MR 2481889 |
Reference:
|
[15] Zamani, Y., Babaei, E.: The dimensions of cyclic symmetry classes of polynomials.J. Algebra Appl. 13 (2014), Article ID 1350085, 10 pages. Zbl 1290.05156, MR 3119646, 10.1142/S0219498813500850 |
Reference:
|
[16] Zamani, Y., Ranjbari, M.: Representations of the general linear group over symmetry classes of polynomials.Czech. Math. J. 68 (2018), 267-276. Zbl 06861580, MR 3783598, 10.21136/CMJ.2017.0458-16 |
. |