[1] Gasull, A., Giacomini, H., Pérez-González, S., Torregrosa, J.:
A proof of Perko’s conjectures for the Bogdanov-Takens system. J. Differential Equations 255 (2013), 2655–2671.
DOI 10.1016/j.jde.2013.07.006 |
MR 3090073
[3] Gasull, A., Guillamon, A.:
Non-existence of limit cycles for some predator–prey systems. Proceedings of Equadiff'91, World Scientific, Singapore, 1993, pp. 538–546.
MR 1242294
[5] Hayashi, M.:
A global condition for the non-existence of limit cycles of Bogdanov-Takens system. Far East J. Math. Sci. 14 (1) (2004), 127–136.
MR 2096965
[6] Hayashi, M., Villari, G., Zanolin, F.:
On the uniqueness of limit cycle for certain Liénard systems without symmetry. Electron. J. Qual. Theory Differ. Equ. 55 (2018), 1–10.
DOI 10.14232/ejqtde.2018.1.55 |
MR 3827993
[7] Kuznetsov, Y.:
Elements of Applied Bifurcation Theory. second ed., Springer-Verlag, New York, 1998.
MR 1711790 |
Zbl 0914.58025
[8] Li, Cheng-zhi, Rousseau, C., Wang, X.:
A simple proof for the unicity of the limit cycle in the Bogdanov-Takens system. Canad. Math. Bull. 33 (1) (1990), 84–92.
DOI 10.4153/CMB-1990-015-3 |
MR 1036862
[9] Matsumoto, T., Komuro, M., Kokubu, H., Tokunaga, R.: Bifurcations (Sights, Sounds and Mathematics). Springer-Verlag, New York, 1993.
[12] Roussarie, R., Wagener, F.:
A study of the Bogdanov-Takens bifurcation. Resenhas 2 (1995), 1–25.
MR 1358328
[13] Teschl, G.:
Ordinary Differential Equations and Dynamical systems. Graduate Studies in Mathematics, vol. 140, AMS, Providence, 2012.
DOI 10.1090/gsm/140/06 |
MR 2961944
[14] Zhi-fen, Z., Tong-ren, D., Wen-zao, H., Zhen-xi, D.:
Qualitative Theory of Differential Equations. Translations of Mathematical Monographs, vol. 102, AMS, Providence, 1992.
MR 1175631