[1] Bajaj, A. K., Chang, S. I., Johnson, J. M.:
Amplitude modulated dynamics of a resonantly excited autoparametric two degree-of-freedom system. Nonlinear Dyn. 5 (1994), 433-457.
DOI 10.1007/bf00052453
[2] Brzeski, P., Karmazyn, A., Perlikowski, P.: Synchronization of two forced double-well Duffing oscillators with attached pendulums. J. Theor. Appl. Mech. 51 (2013), 603-613.
[8] Gus'kov, A. M., Panovko, G. Ya., Bin, C. V.:
Analysis of the dynamics of a pendulum vibration absorber. J. Mach. Manuf. Reliab. 37 (2008), 321-329.
DOI 10.3103/s105261880804002x
[10] Hatwal, H., Mallik, A. K., Ghosh, A.:
Forced nonlinear oscillations of an autoparametric system. I. Periodic responses. J. Appl. Mech. 50 (1983), 657-662.
DOI 10.1115/1.3167106 |
Zbl 0537.70024
[11] Hatwal, H., Mallik, A. K., Ghosh, A.:
Forced nonlinear oscillations of an autoparametric system. II. Chaotic responses. J. Appl. Mech. 50 (1983), 663-668.
DOI 10.1115/1.3167107 |
Zbl 0537.70025
[14] Li, Z., Liu, Q., Zhang, K.:
Harmonic motions of a weakly forced autoparametric vibrating system. J. Phys., Conf. Ser. 1053 (2018), Article ID 012088.
DOI 10.1088/1742-6596/1053/1/012088
[18] Liu, Q., Xing, M., Li, X., Wang, C.:
Unstable and exact periodic solutions of three-particles time-dependent FPU chains. Chin. Phys. B 24 (2015), 246-252.
DOI 10.1088/1674-1056/24/12/120401
[20] Llibre, J., Świrszcz, G.:
On the limit cycles of polynomial vector fields. Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 18 (2011), 203-214.
MR 2768130 |
Zbl 1223.34039
[26] Vyas, A., Bajaj, A. K., Raman, A.:
Dynamics of structures with wideband autoparametric vibration absorbers: theory. Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci. 460 (2004), 1547-1581.
DOI 10.1098/rspa.2003.1204 |
MR 2067554 |
Zbl 1108.70307
[27] Wang, G., Zhou, Z., Zhu, S., Wang, S.: Ordinary Differential Equations. Higher Education Press, Beijing (2006), Chinese.