Previous |  Up |  Next

Article

Keywords:
Poincaré set; homogeneous set; Hausdorff dimension
Summary:
It is known that a set $H$ of positive integers is a Poincaré set (also called intersective set, see I. Ruzsa (1982)) if and only if $\dim _{\mathcal {H}}(X_{H})=0$, where $$ X_{H}:=\biggl \{ x=\sum ^{\infty }_{n=1} \frac {x_{n}}{2^{n}} \colon x_{n}\in \{0,1\}, x_{n} x_{n+h}=0 \ \text {for all} \ n\geq 1, \ h\in H\biggr \} $$ and $\dim _{\mathcal {H}}$ denotes the Hausdorff dimension (see C. Bishop, Y. Peres (2017), Theorem 2.5.5). In this paper we study the set $X_H$ by replacing $2$ with $b>2$. It is surprising that there are some new phenomena to be worthy of studying. We study them and give several examples to explain our results.
References:
[1] Bergelson, V., Lesigne, E.: Van der Corput sets in ${\mathbb Z}^d$. Colloq. Math. 110 (2008), 1-49. DOI 10.4064/cm110-1-1 | MR 2353898 | Zbl 1177.37018
[2] Bishop, C. J., Peres, Y.: Fractals in Probability and Analysis. Cambridge Studies in Advanced Mathematics 162, Cambridge University Press, Cambridge (2017). DOI 10.1017/9781316460238 | MR 3616046 | Zbl 1390.28012
[3] Bourgain, J.: Ruzsa's problem on sets of recurrence. Isr. J. Math. 59 (1987), 150-166. DOI 10.1007/BF02787258 | MR 0920079 | Zbl 0643.10045
[4] Falconer, K.: Fractal Geometry. Mathematical Foundations and Applications. Wiley, New York (2003). DOI 10.1002/0470013850 | MR 2118797 | Zbl 1060.28005
[5] Furstenberg, H.: Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions. J. Anal. Math. 31 (1977), 204-256. DOI 10.1007/BF02813304 | MR 0498471 | Zbl 0347.28016
[6] Furstenberg, H.: Recurrence in Ergodic Theory and Combinatorial Number Theory. Princenton University Press, Princenton (1981). DOI 10.1515/9781400855162 | MR 603625 | Zbl 0459.28023
[7] Ireland, K., Rosen, M.: A Classical Introduction to Modern Number Theory. Graduate Texts in Mathematics 84, Springer, New York (1990). DOI 10.1007/978-1-4757-2103-4 | MR 1070716 | Zbl 0712.11001
[8] Kamae, T., France, M. Mendès: Van der Corput's difference theorem. Isr. J. Math. 31 (1978), 335-342. DOI 10.1007/BF02761498 | MR 516154 | Zbl 0396.10040
[9] Lê, T. H.: Problems and results on intersective sets. Combinatorial and Additive Number Theory---CANT 2011 Springer Proceedings in Mathematics & Statistics 101, Springer, New York (2014), 115-128. DOI 10.1007/978-1-4939-1601-6_9 | MR 3297075 | Zbl 1371.11028
[10] Montgomery, H. L.: Ten Lectures on the Interface Between Analytic Number Theory and Harmonic Analysis. CBMS Regional Conference Series in Mathematics 84, American Mathematical Society, Providence (1994). DOI 10.1090/cbms/084 | MR 1297543 | Zbl 0814.11001
[11] Ruzsa, I. Z.: Uniform distribution, positive trigonometric polynomials and difference sets. Sémin. Théor. Nombres, Univ. Bordeaux I. (1982), Article ID 18, 18 pages. MR 0695335 | Zbl 0515.10048
[12] Sárközy, A.: On difference sets of sequences of integers I. Acta Math. Acad. Sci. Hung. 31 (1978), 125-149. DOI 10.1007/BF01896079 | MR 466059 | Zbl 0387.10033
[13] Sárközy, A.: On difference sets of sequences of integers II. Ann. Univ. Sci. Budap. Rolando Eötvös, Sect. Math. 21 (1978), 45-53. MR 536201 | Zbl 0413.10051
[14] Sárközy, A.: On difference sets of sequences of integers III. Acta Math. Acad. Sci. Hung. 31 (1978), 355-386. DOI 10.1007/BF01901984 | MR 487031 | Zbl 0387.10034
Partner of
EuDML logo