Article
Keywords:
Euler's phi function; Dedekind's psi function; inequalities
Summary:
For positive integers $n$, Euler's phi function and Dedekind's psi function are given by $$ \phi (n)= n \prod _{\substack { p\mid n \\ p \ {\rm prime}}} \Bigl (1-\frac {1}{p}\Bigr ) \quad \mbox {and} \quad \psi (n)=n\prod _{\substack { p\mid n \\ p \ {\rm prime}}} \Bigl (1+\frac {1}{p}\Bigr ), $$ respectively. We prove that for all $n\geq 2$ we have $$ \Bigl (1-\frac {1}{n}\Bigr )^{n-1}\Bigl (1+\frac {1}{n}\Bigr )^{n+1} \leq \Bigl (\frac {\phi (n)}{n} \Bigr )^{\phi (n)} \Bigl ( \frac {\psi (n)}{n}\Bigr )^{\psi (n)} $$ and $$ \Bigl (\frac {\phi (n)}{n} \Bigr )^{\psi (n)} \Bigl ( \frac {\psi (n)}{n}\Bigr )^{\phi (n)} \leq \Bigl (1-\frac {1}{n}\Bigr )^{n+1}\Bigl (1+\frac {1}{n}\Bigr )^{n-1}. $$ \endgraf The sign of equality holds if and only if $n$ is a prime. The first inequality refines results due to Atanassov (2011) and Kannan \& Srikanth (2013).
References:
[2] Atanassov, K. T.:
Note on $\varphi$, $\psi$ and $\sigma$-functions III. Notes Number Theory Discrete Math. 17 (2011), 13-14.
MR 1418823 |
Zbl 1259.11009
[3] Kannan, V., Srikanth, R.:
Note on $\varphi$ and $\psi$ functions. Notes Number Theory Discrete Math. 19 (2013), 19-21.
Zbl 1329.11006
[5] Sándor, J.:
On certain inequalities for $\sigma$, $\varphi$, $\psi$ and related functions. Notes Number Theory Discrete Math. 20 (2014), 52-60.
MR 1417443 |
Zbl 1344.11008
[6] Sándor, J.:
Theory of Means and Their Inequalities. (2018), Available at \let \relax\brokenlink {
http://www.math.ubbcluj.ro/ jsandor/lapok/Sandor-Jozsef-Theory of Means {and Their Inequalities.pdf}}.
[8] Solé, P., Planat, M.:
Extreme values of Dedekind's $\psi$-function. J. Comb. Number Theory 3 (2011), 33-38.
MR 2908180 |
Zbl 1266.11107