[1] Aleksandrov, A. Y., Hu, G. D., Zhabko, A. P.:
Delay-independent stability conditions for some classes of nonlinear systems. IEEE Trans. Automat. Control 59 (2014), 2209-2214.
DOI 10.1109/tac.2014.2299012 |
MR 3245263
[3] Brown, J. W., Churchill, R. V.:
Complex Variables and Applications. McGraw-Hill Companies, Inc. and China Machine Press, Beijing 2004.
MR 0112948
[6] Han, Q. L.:
Stability criteria for a class of linear neutral systems with time-varying discrete and distributed delays. IMA J. Math. Control Inform. 20 (2003), 371-386.
DOI 10.1093/imamci/20.4.371 |
MR 2028146
[8] Hu, G. D., Cahlon, B.:
Estimations on numerically stable step-size for neutral delay differential systems with multiple delays. J. Compt. Appl. Math. 102 (1999), 221-234.
DOI 10.1016/s0377-0427(98)00215-5 |
MR 1674027
[10] Huang, C., Vandewalle, S.:
An analysis of delay-dependent stability for ordinary and partial differential equations with fixed and distributed delays. SIAM J. Scientific Computing 25 (2004), 1608-1632.
DOI 10.1137/s1064827502409717 |
MR 2087328
[11] Johnson, L. W., Riess, R. Dean, Arnold, J. T.: Introduction to Linear Algebra. Prentice-Hall, Englewood Cliffs 2000.
[12] Jury, E. I.: Theory and Application of $z$-Transform Method. John Wiley and Sons, New York 1964.
[14] Kolmanovskii, V. B., Myshkis, A.:
Introduction to Theory and Applications of Functional Differential Equations. Kluwer Academic Publishers, Dordrecht 1999.
DOI 10.1007/978-94-017-1965-0 |
MR 1680144
[15] Lambert, J. D.:
Numerical Methods for Ordinary Differential Systems. John Wiley and Sons, New York 1999.
MR 1127425
[16] Lancaster, P., Tismenetsky, M.:
The Theory of Matrices with Applications. Academic Press, Orlando 1985.
MR 0792300
[17] Maset, S.:
Instability of Runge-Kutta methods when applied to linear systems of delay differential equations. Numer. Math. 90 (2002), 555-562.
DOI 10.1007/s002110100266 |
MR 1884230
[19] Tian, H., Kuang, J.:
The stability of the $\theta$-methods in numerical solution of delay differential equations with several delay terms. J. Comput. Appl. Math. 58 (1995), 171-181.
DOI 10.1016/0377-0427(93)e0269-r |
MR 1343634
[20] Vyhlidal, T., Zitek, P.:
Modification of Mikhaylov criterion for neutral time-delay systems. IEEE Trans. Automat. Control 54 (2009), 2430-2435.
DOI 10.1109/tac.2009.2029301 |
MR 2562848