[2] Algoet, P.:
The strong law of large numbers for sequential decisions under uncertainty. IEEE Trans. Inform. Theory 40 (1994), 609-633.
DOI 10.1109/18.335876 |
MR 1295308
[4] Bailey, D.:
Sequential Schemes for Classifying and Predicting Ergodic Processes. Ph.D. Thesis, Stanford University 1976.
MR 2626644
[6] Cover, T.:
Open problems in information theory. In: 1975 IEEE-USSR Joint Workshop on Information Theory 1975, pp. 35-36.
MR 0469507
[7] Chow, Y. S., Teicher, H.:
Probability Theory: Independence, Interchangeability, Martingales. Second edition. Springer-Verlag, New York 1978.
MR 0513230
[8] Doob, J. L.:
Stochastic Processes. Wiley, 1990
MR 1038526
[10] Györfi, L., Kohler, M., Krzyzak, A., Walk, H.:
A Distribution-Free Theory of Nonparametric Regression. Springer Series in Statistics, Springer-Verlag, New York 2002.
DOI 10.1007/b97848 |
MR 1920390
[13] Györfi, L., Ottucsák, Gy., Walk, H.:
Machine Learning for Financial Engineering. Imperial College Press, London 2012.
DOI 10.1142/p818
[14] Hall, P., Heyde, C. C.:
Martingale Limit Theory and Its Application. Academic Prress, 1975.
MR 0624435
[16] Morvai, G.: Estimation of Conditional Distribution for Stationary Time Series. Ph.D. Thesis, Technical University of Budapest 1994.
[18] Morvai, G., Weiss, B.:
Nonparametric sequential prediction for stationary processes. Ann. Prob. 39 (2011), 1137-1160.
DOI 10.1214/10-aop576 |
MR 2789586
[19] Neveu, J.:
Mathematical Foundations of the Calculus of Probability. Holden-Day, 1965.
MR 0198505
[21] Ryabko, B.:
Prediction of random sequences and universal coding. Probl. Inform. Trans. 24 (1988), 87-96.
MR 0955983 |
Zbl 0666.94009
[25] Shields, P. C.:
Cutting and stacking: a method for constructing stationary processes. IEEE Trans. Inform. Theory 37 (1991), 1605-1614.
DOI 10.1109/18.104321 |
MR 1134300
[26] Shiryayev, A. N.:
Probability. Springer-Verlag, New York 1984.
MR 0737192
[27] Weiss, B.:
Single Orbit Dynamics. American Mathematical Society, 2000.
MR 1727510