[1] Muriefah, F.S. Abu, Rashed, A. Al:
The simultaneous Diophantine equations $y^{2}-5x^{2}=4$ and $z^{2}-442x^{2}=441$. Arabian Journal for Science and Engineering, 31, 2, 2006, 207-211,
MR 2284646
[3] Baker, A., Davenport, H.:
The equations $3x^{2}-2= y^{2}$ and $8x^{2}-7= z^{2}$. Quart. J. Math. Oxford, 20, 1969, 129-137,
MR 0248079
[4] Brown, E.:
Sets in which $xy+k$ is always a square. Mathematics of Computation, 45, 172, 1985, 613--620,
MR 0804949
[5] Cohn, J.H.E.:
Lucas and Fibonacci numbers and some Diophantine equations. Glasgow Mathematical Journal, 7, 1, 1965, 24-28, Cambridge University Press,
MR 0177944
[6] Copley, G.N.:
Recurrence relations for solutions of Pell's equation. The American Mathematical Monthly, 66, 4, 1959, 288-290, JSTOR,
DOI 10.2307/2309637 |
MR 0103168
[7] Darmon, H., Granville, A.:
On the equations $z^{m}= f (x, y)$ and $ax^{p}+ by^{q}= cz^{r}$. Bulletin of the London Mathematical Society, 27, 6, 1995, 513-543, Wiley Online Library,
MR 1348707
[10] Mohanty, S.P., Ramasamy, A.M.S.:
The simultaneous diophantine equations $5y^{2}- 20= x^{2}$ and $2y^{2}+ 1= z^{2}$. Journal of Number Theory, 18, 3, 1984, 356-359, Elsevier,
MR 0746870
[11] Mordell, L.J.:
Diophantine equations. Pure and Applied Mathematics, 30, 1969, Academic Press,
MR 0249355
[12] Peker, B., Cenberci, S.:
On the equations $y^2-10x^2=9$ and $z^2-17x^2=16$. International Mathematical Forum, 12, 15, 2017, 715-720,
DOI 10.12988/imf.2017.7651
[13] Siegel, C.L.:
Über einige Anwendungen diophantischer Approximationen. On Some Applications of Diophantine Approximations. Publications of the Scuola Normale Superiore, vol. 2, 2014, 81-138, Edizioni della Normale, Pisa,
MR 3330350
[14] Szalay, L.:
On the resolution of simultaneous Pell equations. Annales Mathematicae et Informaticae, 34, 2007, 77-87,
MR 2385427
[15] Thue, A.:
Über Ann{ä}herungswerte algebraischer Zahlen. Journal für die Reine und Angewandte Mathematik, 135, 1909, 284-305,
MR 1580770