[1] Aldwoah, K.A.: Generalized time scales and associated difference equations. 2009, Cairo University, Ph.D. Thesis.
[2] Allahverdiev, B.P., Tuna, H.:
An expansion theorem for $q$-Sturm-Liouville operators on the whole line. Turkish J. Math., 42, 3, 2018, 1060-1071,
MR 3804971
[3] Allahverdiev, B.P., Tuna, H.:
Spectral expansion for singular Dirac system with impulsive conditions. Turkish J. Math., 42, 5, 2018, 2527-2545,
DOI 10.3906/mat-1803-79 |
MR 3866169
[4] Allahverdiev, B.P., Tuna, H.:
Eigenfunction expansion in the singular case for Dirac systems on time scales. Konuralp J. Math., 7, 1, 2019, 128-135,
MR 3948622
[5] Allahverdiev, B.P., Tuna, H.:
The spectral expansion for Hahn-Dirac system on the whole line. Turkish J. Math., 43, 2019, 1668-1687,
DOI 10.3906/mat-1902-16 |
MR 3962557
[6] Allahverdiev, B.P., Tuna, H.:
Eigenfunction expansion for singular Sturm-Liouville problems with transmission conditions. Electron. J. Differ.Equat., 2019, 3, 2019, 1-10,
MR 3904844
[7] Allahverdiev, B.P., Tuna, H.: The Parseval equality and expansion formula for singular Hahn-Dirac system. Emerging Applications of Differential Equations and Game Theory, 2020, 209-235, IGI Global,
[9] Annaby, M.H., Hamza, A.E., Aldwoah, K.A.:
Hahn difference operator and associated Jackson-Nörlund integrals. J. Optim. Theory Appl., 154, 2012, 133-153,
DOI 10.1007/s10957-012-9987-7 |
MR 2931371
[10] Annaby, M.H., Hamza, A.E., Makharesh, S.D.:
A Sturm-Liouville theory for Hahn difference operator. Frontiers of Orthogonal Polynomials and $q$-Series, 2018, 35-84, World Scientific, Singapore,
MR 3791609
[11] Annaby, M.A., Hassan, H.A.:
Sampling theorems forJackson-Nörlund transforms associated with Hahn-difference operators. J. Math. Anal. Appl., 464, 1, 2018, 493-506,
DOI 10.1016/j.jmaa.2018.04.016 |
MR 3794101
[12] Arvesú, J.:
On some properties of $q-$Hahn multiple orthogonal polynomials. J. Comput. Appl. Math., 233, 6, 2010, 1462-1469, Elsevier, doi:10.1016/j.cam.2009.02.062.
DOI 10.1016/j.cam.2009.02.062 |
MR 2559332
[13] Berezanskii, J.M.:
Expansions in Eigenfunctions of Selfadjoint Operators. 1968, Amer. Math. Soc., Providence,
MR 0222718 |
Zbl 0157.16601
[14] Dobrogowska, A., Odzijewicz, A.:
Second order $q$-difference equations solvable by factorization method. J. Comput. Appl. Math., 193, 1, 2006, 319-346,
DOI 10.1016/j.cam.2005.06.009 |
MR 2228721
[15] Guseinov, G.Sh.:
Eigenfunction expansions for a Sturm-Liouville problem on time scales. Int. J. Difference Equat., 2, 1, 2007, 93-104,
MR 2374102
[16] Guseinov, G.Sh.:
An expansion theorem for a Sturm-Liouville operator on semi-unbounded time scales. Adv. Dyn. Syst. Appl., 3, 1, 2008, 147-160,
MR 2547666
[19] Hamza, A.E., Ahmed, S.A.:
Existence and uniqueness of solutions of Hahn difference equations. Adv. Difference Equat., 316, 2013, 1-15,
MR 3337265
[20] Hamza, A.E., Makharesh, S.D.:
Leibniz' rule and Fubinis theorem associated with Hahn difference operator. J. Adv. Math., 12, 6, 2016, 6335-6345,
DOI 10.24297/jam.v12i6.3836
[21] Huseynov, A., Bairamov, E.:
On expansions in eigenfunctions for second order dynamic equations on time scales. Nonlinear Dyn. Syst. Theory, 9, 1, 2009, 77-88,
MR 2510666
[22] Huseynov, A.:
Eigenfunction expansion associated with the one-dimensional Schrödinger equation on semi-infinite time scale intervals. Rep. Math. Phys., 66, 2, 2010, 207-235,
DOI 10.1016/S0034-4877(10)00026-1 |
MR 2777355
[24] Jagerman, D.L.:
Difference Equations with Applications to Queues. 2000, Dekker, New York,
MR 1792377
[25] Jordan, C.:
Calculus of Finite Differences, 3rd edn. 1965, Chelsea, New York,
MR 0183987
[26] Kolmogorov, A.N., Fomin, S.V.:
Introductory Real Analysis. Translated by R.A. Silverman. 1970, Dover Publications, New York,
MR 0377445
[27] Kwon, K.H., Lee, D.W., Park, S.B., Yoo, B.H.:
Hahn class orthogonal polynomials. Kyungpook Math. J., 38, 1998, 259-281,
MR 1665852
[28] Lesky, P.A.: Eine Charakterisierung der klassischen kontinuierlichen, diskretenund $q$-Orthgonalpolynome. 2005, Shaker, Aachen,
[30] Levitan, B.M., Sargsjan, I.S.:
Sturm-Liouville and Dirac Operators. 1991, Springer,
MR 1136037
[31] Naimark, M.A.:
Linear Differential Operators, 2nd edn., 1968. 1969, Nauka, Moscow, English translation of 1st edn..
MR 0353061
[32] Petronilho, J.:
Generic formulas for the values at the singular points of some special monic classical $H_{q,\omega }$-orthogonal polynomials. J. Comput. Appl. Math., 205, 2007, 314-324,
DOI 10.1016/j.cam.2006.05.005 |
MR 2324843
[33] Sitthiwirattham, T.:
On a nonlocal boundary value problem for nonlinear second-order Hahn difference equation with two different $q,\omega $-derivatives. Adv. Difference Equat., 2016, 1, 2016, Article number 116.
MR 3490997
[35] Stone, M.H.:
Linear Transformations in Hilbert Space and Their Application to Analysis. 1932, Amer. Math. Soc.,
MR 1451877
[36] Titchmarsh, E.C.:
Eigenfunction Expansions Associated with Second-Order Differential Equations. Part I. Second Edition. 1962, Clarendon Press, Oxford,
MR 0176151
[37] Weyl, H.:
Über gewöhnlicke Differentialgleichungen mit Singuritaten und die zugehörigen Entwicklungen willkürlicher Funktionen. Math. Annal., 68, 1910, 220-269,
DOI 10.1007/BF01474161 |
MR 1511560
[39] Yosida, K.:
Lectures on Differential and Integral Equations. 1960, Springer, New York,
MR 0118869