Previous |  Up |  Next

Article

Keywords:
Hahn's Sturm-Liouville equation; spectral function; Parseval equality; spectral expansion.
Summary:
In this work, we consider the singular Hahn difference equation of the Sturm-Liouville type. We prove the existence of the spectral function for this equation. We establish Parseval equality and an expansion formula for this equation on a semi-unbounded interval.
References:
[1] Aldwoah, K.A.: Generalized time scales and associated difference equations. 2009, Cairo University, Ph.D. Thesis.
[2] Allahverdiev, B.P., Tuna, H.: An expansion theorem for $q$-Sturm-Liouville operators on the whole line. Turkish J. Math., 42, 3, 2018, 1060-1071, MR 3804971
[3] Allahverdiev, B.P., Tuna, H.: Spectral expansion for singular Dirac system with impulsive conditions. Turkish J. Math., 42, 5, 2018, 2527-2545, DOI 10.3906/mat-1803-79 | MR 3866169
[4] Allahverdiev, B.P., Tuna, H.: Eigenfunction expansion in the singular case for Dirac systems on time scales. Konuralp J. Math., 7, 1, 2019, 128-135, MR 3948622
[5] Allahverdiev, B.P., Tuna, H.: The spectral expansion for Hahn-Dirac system on the whole line. Turkish J. Math., 43, 2019, 1668-1687, DOI 10.3906/mat-1902-16 | MR 3962557
[6] Allahverdiev, B.P., Tuna, H.: Eigenfunction expansion for singular Sturm-Liouville problems with transmission conditions. Electron. J. Differ.Equat., 2019, 3, 2019, 1-10, MR 3904844
[7] Allahverdiev, B.P., Tuna, H.: The Parseval equality and expansion formula for singular Hahn-Dirac system. Emerging Applications of Differential Equations and Game Theory, 2020, 209-235, IGI Global,
[8] Álvarez-Nodarse, R.: On characterizations of classical polynomials. J. Comput. Appl. Math., 196, 1, 2006, 320-337, DOI 10.1016/j.cam.2005.06.046 | MR 2241592
[9] Annaby, M.H., Hamza, A.E., Aldwoah, K.A.: Hahn difference operator and associated Jackson-Nörlund integrals. J. Optim. Theory Appl., 154, 2012, 133-153, DOI 10.1007/s10957-012-9987-7 | MR 2931371
[10] Annaby, M.H., Hamza, A.E., Makharesh, S.D.: A Sturm-Liouville theory for Hahn difference operator. Frontiers of Orthogonal Polynomials and $q$-Series, 2018, 35-84, World Scientific, Singapore, MR 3791609
[11] Annaby, M.A., Hassan, H.A.: Sampling theorems forJackson-Nörlund transforms associated with Hahn-difference operators. J. Math. Anal. Appl., 464, 1, 2018, 493-506, DOI 10.1016/j.jmaa.2018.04.016 | MR 3794101
[12] Arvesú, J.: On some properties of $q-$Hahn multiple orthogonal polynomials. J. Comput. Appl. Math., 233, 6, 2010, 1462-1469, Elsevier, doi:10.1016/j.cam.2009.02.062. DOI 10.1016/j.cam.2009.02.062 | MR 2559332
[13] Berezanskii, J.M.: Expansions in Eigenfunctions of Selfadjoint Operators. 1968, Amer. Math. Soc., Providence, MR 0222718 | Zbl 0157.16601
[14] Dobrogowska, A., Odzijewicz, A.: Second order $q$-difference equations solvable by factorization method. J. Comput. Appl. Math., 193, 1, 2006, 319-346, DOI 10.1016/j.cam.2005.06.009 | MR 2228721
[15] Guseinov, G.Sh.: Eigenfunction expansions for a Sturm-Liouville problem on time scales. Int. J. Difference Equat., 2, 1, 2007, 93-104, MR 2374102
[16] Guseinov, G.Sh.: An expansion theorem for a Sturm-Liouville operator on semi-unbounded time scales. Adv. Dyn. Syst. Appl., 3, 1, 2008, 147-160, MR 2547666
[17] Hahn, W.: Über orthogonalpolynome, die $q$-Differenzengleichungen genügen. Math. Nachr., 2, 1949, 4-34, DOI 10.1002/mana.19490020103 | MR 0030647
[18] Hahn, W.: Ein Beitrag zur Theorie der Orthogonalpolynome. Monatsh. Math., 95, 1983, 19-24, DOI 10.1007/BF01301144 | MR 0697345
[19] Hamza, A.E., Ahmed, S.A.: Existence and uniqueness of solutions of Hahn difference equations. Adv. Difference Equat., 316, 2013, 1-15, MR 3337265
[20] Hamza, A.E., Makharesh, S.D.: Leibniz' rule and Fubinis theorem associated with Hahn difference operator. J. Adv. Math., 12, 6, 2016, 6335-6345, DOI 10.24297/jam.v12i6.3836
[21] Huseynov, A., Bairamov, E.: On expansions in eigenfunctions for second order dynamic equations on time scales. Nonlinear Dyn. Syst. Theory, 9, 1, 2009, 77-88, MR 2510666
[22] Huseynov, A.: Eigenfunction expansion associated with the one-dimensional Schrödinger equation on semi-infinite time scale intervals. Rep. Math. Phys., 66, 2, 2010, 207-235, DOI 10.1016/S0034-4877(10)00026-1 | MR 2777355
[23] Jackson, F.H.: $q$-Difference equations. Amer. J. Math., 32, 1910, 305-314, DOI 10.2307/2370183 | MR 1506108
[24] Jagerman, D.L.: Difference Equations with Applications to Queues. 2000, Dekker, New York, MR 1792377
[25] Jordan, C.: Calculus of Finite Differences, 3rd edn. 1965, Chelsea, New York, MR 0183987
[26] Kolmogorov, A.N., Fomin, S.V.: Introductory Real Analysis. Translated by R.A. Silverman. 1970, Dover Publications, New York, MR 0377445
[27] Kwon, K.H., Lee, D.W., Park, S.B., Yoo, B.H.: Hahn class orthogonal polynomials. Kyungpook Math. J., 38, 1998, 259-281, MR 1665852
[28] Lesky, P.A.: Eine Charakterisierung der klassischen kontinuierlichen, diskretenund $q$-Orthgonalpolynome. 2005, Shaker, Aachen,
[29] Levinson, N.: A simplified proof of the expansion theorem for singular second order linear differential equations. Duke Math. J., 18, 1951, 57-71, DOI 10.1215/S0012-7094-51-01806-6 | MR 0041313
[30] Levitan, B.M., Sargsjan, I.S.: Sturm-Liouville and Dirac Operators. 1991, Springer, MR 1136037
[31] Naimark, M.A.: Linear Differential Operators, 2nd edn., 1968. 1969, Nauka, Moscow, English translation of 1st edn.. MR 0353061
[32] Petronilho, J.: Generic formulas for the values at the singular points of some special monic classical $H_{q,\omega }$-orthogonal polynomials. J. Comput. Appl. Math., 205, 2007, 314-324, DOI 10.1016/j.cam.2006.05.005 | MR 2324843
[33] Sitthiwirattham, T.: On a nonlocal boundary value problem for nonlinear second-order Hahn difference equation with two different $q,\omega $-derivatives. Adv. Difference Equat., 2016, 1, 2016, Article number 116. MR 3490997
[34] Stone, M.H.: A comparison of the series of Fourier and Birkhoff. Trans. Amer. Math. Soc., 28, 1926, 695-761, DOI 10.1090/S0002-9947-1926-1501372-6 | MR 1501372
[35] Stone, M.H.: Linear Transformations in Hilbert Space and Their Application to Analysis. 1932, Amer. Math. Soc., MR 1451877
[36] Titchmarsh, E.C.: Eigenfunction Expansions Associated with Second-Order Differential Equations. Part I. Second Edition. 1962, Clarendon Press, Oxford, MR 0176151
[37] Weyl, H.: Über gewöhnlicke Differentialgleichungen mit Singuritaten und die zugehörigen Entwicklungen willkürlicher Funktionen. Math. Annal., 68, 1910, 220-269, DOI 10.1007/BF01474161 | MR 1511560
[38] Yosida, K.: On Titchmarsh-Kodaira formula concerning Weyl-Stone eingenfunction expansion. Nagoya Math. J., 1, 1950, 49-58, DOI 10.1017/S0027763000022820 | MR 0042016
[39] Yosida, K.: Lectures on Differential and Integral Equations. 1960, Springer, New York, MR 0118869
Partner of
EuDML logo