[1] Bu, X., Dong, H., Han, F., Hou, N., Li, G.:
Distributed filtering for time-varying systems over sensor networks with randomly switching topologies under the Round-Robin protocol. Neurocomputing 346 (2019), 58-64.
DOI 10.1016/j.neucom.2018.07.087 |
MR 4044317
[2] Chen, W., Ding, D., Ge, X., Han, Q.-L., Wei, G.:
H-infinity containment control of multi-agent systems under event-triggered communication scheduling: The finite-horizon case. IEEE Trans. Cybernet. 59 (2020), 4, 1372-1382.
DOI 10.1109/tcyb.2018.2885567
[4] Ding, D., Han, Q.-L., Wang, Z., Ge, X.:
A survey on model-based distributed control and filtering for industrial cyber-physical systems. IEEE Trans. Industr. Inform. 15 (2019), 2483-2499.
DOI 10.1109/tii.2019.2905295
[5] Ding, D., Wang, Z., Han, Q.-L., Wei, G.:
Neural-network-based output-feedback control under Round-Robin scheduling protocols. IEEE Trans. Cybernet. 49 (2019), 2372-2384.
DOI 10.1109/tii.2019.2905295
[6] Dong, H., Bu, X., Hou, N., Liu, Y., Alsaadi, F. E., Hayat, T.:
Event-triggered distributed state estimation for a class of time-varying systems over sensor networks with redundant channels. Inform. Fusion 36 (2017), 243-250.
DOI 10.1016/j.inffus.2016.12.005
[7] Ding, D., Wang, Z., Wei, G., Alsaadi, F. E.:
Event-based security control for discrete-time stochastic systems. IET Control Theory Appl. 10 (2016), 1808-1815.
DOI 10.1049/iet-cta.2016.0135 |
MR 3587315
[8] Ge, X., Han, Q.-L., Wang, Z.:
A threshold-parameter-dependent approach to designing distributed event-triggered $H_{\infty}$ consensus filters over sensor networks. IEEE Trans. Cybernet. 49 (2019),1148-1159.
DOI 10.1109/tcyb.2017.2789296
[9] Ge, X., Han, Q.-L., Wang, Z.:
A dynamic event-triggered transmission scheme for distributed set-membership estimation over wireless sensor networks. IEEE Trans. Cybernet. 49 (2019), 171-183.
DOI 10.1109/tcyb.2017.2769722
[10] Ge, X., Han, Q.-L.:
Consensus of multiagent systems subject to partially accessible and overlapping Markovian network topologies. IEEE Trans. Cybernet. 47 (2017), 1807-1819.
DOI 10.1109/tcyb.2016.2570860
[11] Gao, M., Yang, S., Sheng, L., Zhou, D.:
Fault diagnosis for time-varying systems with multiplicative noises over sensor networks subject to Round-Robin protocol. Neurocomputing 346 (2019), 65-72.
DOI 10.1016/j.neucom.2018.08.087
[13] Han, F., Song, Y., Zhang, S., Li, W.:
Local condition-based finite-horizon distributed $H_{\infty}$-consensus filtering for random parameter system with event-triggering protocols. Neruocomputing 219 (2017), 221-231.
DOI 10.1016/j.neucom.2016.09.022
[14] Han, F., Ding, D., Yang., F., Gao, W.:
Distributed resilient estimation for nonlinear delay systems with stochastic perturbations. Int. J. Robust Nonlinear Control 30 (2020) 843-863.
DOI 10.1002/rnc.4783
[15] Hu, J., Chen, D., Du, J.:
State estimation for a class of discrete nonlinear systems with randomly occurring uncertainties and distributed sensor delays. Int. J. General Systems 43 (2014), 387-401.
DOI 10.1080/03081079.2014.892251 |
MR 3177030
[16] Hu, J., Liang, J., Chen, D.:
A recursive approach to non-fragile filtering for networked systems with stochastic uncertainties and incomplete measurements. J. Franklin Inst. 352 (2015), 1946-1962.
DOI 10.1016/j.jfranklin.2015.02.002 |
MR 3334122
[17] Liu, Y., Guo, B., Park, J.:
Non-fragile $H_{\infty}$ filtering for delayed Takagi-Sugeno fuzzy systems with randomly occurring gain variations. Fuzzy Sets Systems 316 (2017), 99-116.
DOI 10.1016/j.fss.2016.11.001 |
MR 3623196
[18] Ko, J. W., Park, P. G.:
Further enhancement of stability and stabilisability margin for Takagi-Sugeno fuzzy systems. IET Control Theory 6 (2012), 313-318.
DOI 10.1049/iet-cta.2011.0009 |
MR 2932086
[19] Liu, Y., Wang, Z., Liang, J., Liu, X.:
Synchronization and state estimation for discrete-time complex networks with distributed delays. IEEE Trans. Cybernet. 38 (2008), 1314-1325.
DOI 10.1109/tsmcb.2008.925745
[20] Li, Q., Shen, B., Wang, Z.:
An event-triggered approach to distributed $H_{\infty}$ state estimation for state-saturated systems with randomly occurring mixed delays. J. Franklin Inst. 355 (2018), 3104-3121.
DOI 10.1016/j.jfranklin.2018.02.007 |
MR 3778262
[21] Li, Q., Shen, B., Liu, Y., Alsaadi, F. E.:
Event-triggered $H_{\infty}$ state estimation for discrete-time stochastic genetic regulatory networks with Markovian jumping parameters and time-varying delays. Neurocomputing {\mi174} (2016), 912-920.
DOI 10.1016/j.neucom.2015.10.017
[22] Li, J., Dong, H., Wang, Z., Bu, X.: Partial-Neurons-Based Passivity-Guaranteed state estimation for neural networks with randomly occurring time-delays. IEEE Trans. Neural Networks Learning Syst. (2019), 1-7.
[23] Li, J., Dong, H., Wang, Z., Hou, N., Alsaadi, F. E.:
On passivity and robust passivity for discrete-time stochastic neural networks with randomly occurring mixed time delays. Neural Computing Appl. 31 (2019), 65-78.
DOI 10.1007/s00521-017-2980-1
[24] Lian, Z., He, Y., Zhang, C.:
Stability analysis for T-S fuzzy systems with time-varying delay via free-matrix-based integral inequality. Int. Control Automat. Syst. 14 (2016), 21-28.
DOI 10.1007/s12555-015-2001-z |
MR 3774604
[27] Liu, J., Liu, Q., Cao, J.:
Adaptive event-triggered $H_{\infty}$ filtering for T-S fuzzy system with time delay. Neurocomputing 189 (2016), 86-94.
DOI 10.1016/j.neucom.2015.12.049
[28] Ma, L., Wang, Z., Liu, Y., Alsaadi, F. E.:
A note on guaranteed cost control for nonlinear stochastic systems with input saturation and mixed time-delays. Int. J. Robust Nonlinear Control 27 (2017), 4443-4456.
DOI 10.1002/rnc.3809 |
MR 3733677
[29] Shi, P., Zhang, Y., Agarwal, R. K.:
Stochastic finite-time state estimation for discrete time-delay neural networks with Markovian jumps. Neurocomputing 151 (2015), 168-174.
DOI 10.1016/j.neucom.2014.09.059
[30] Sheng, L., Niu, Y., Gao, M.:
Distributed resilient filtering for time-varying systems over sensor networks subject to Round-Robin/stochastic protocol. ISA Trans. 87 (2019), 55-67.
DOI 10.1016/j.isatra.2018.11.012
[31] Sheng, L., Wang, Z., Zou, L., Alsaadi, F.:
Event-based $H_{\infty}$ state estimation for time-varying stochastic dynamical networks with state- and disturbance-dependent noises. IEEE Trans. Neural Networks Learning Syst. 28 (2017), 2382-2394.
DOI 10.1109/tnnls.2016.2580601 |
MR 3709755
[32] Shen, Y., Wang, Z., Shen, B., Alsaadi, Fa. E., Alsaadi, F. E.:
Fusion estimation for multi-rate linear repetitive processes under weighted Try-Once-Discard protocol. Inform. Fusion 55 (2020), 281-291.
DOI 10.1016/j.inffus.2019.08.013
[33] Tong, M., Lin, W., Huo, X., Jin, Z.:
A model-free fuzzy adaptive trajectory tracking control algorithm based on dynamic surface control. Int. J. Advanced Robotic Syst. 17 (2020), 1, 1729881419894417.
DOI 10.1177/1729881419894417
[34] Tian, E., Wang, Z., Zou, L., Yue, D.:
Probability-constrained filtering for a class of nonlinear systems with improved static event-triggered communication. Int. J. Robust and Nonlinear Control 29 (2019), 1484-1498.
DOI 10.1002/rnc.4447 |
MR 3915146
[35] Takagi, T., Sugeno, M.: Fuzzy identification of systems and its application to modelling and control. IEEE Trans. Systems Man Cybernet. SMC-15 (1985), 116-132
[36] Yu, Y., Dong, H., Wang, Z.:
Design of non-fragile state estimators for discrete time-delayed neural networks with parameter uncertainties. Neurocomputing 182 (2016), 18-24.
DOI 10.1016/j.neucom.2015.11.079
[37] Yan, H., Qian, F., Yang, F.:
$H_{\infty}$ filtering for nonlinear networked systems with randomly occurring distributed delays, missing measurements and sensor saturation. Inform. Sci. 370 (2016), 772-782.
DOI 10.1016/j.ins.2015.09.027
[38] Wang, L., Wang, Z., Huang, T., Wei, G.:
An event-triggered approach to state estimation for a class of complex networks with mixed time delays and nonlinearities. IEEE Trans. Cybernet. 46 (2016), 2497-2508.
DOI 10.1109/tcyb.2015.2478860
[39] Wang, F., Wang, Z., Liang, J.:
Resilient state estimation for 2-D time-varying systems with redundant channels: A variance-constrained approach. IEEE Trans. Cybernet. 49 (2019), 2479-2489.
DOI 10.1109/tcyb.2018.2821188
[40] Wang, B., Cheng, J., Al-Barakati, A.:
A mismatched membership function approach to sampled-data stabilization for T-S fuzzy systems with time-varying delayed signals. Signal Process. 140 (2017), 161-170.
DOI 10.1016/j.sigpro.2017.05.018
[41] Wu, L., Su, X., Shi, P.:
Robust filtering of discrete-time T-S fuzzy time-delay systems. In: Fuzzy Control Systems with Time-Delay and Stochastic Perturbation, Springer-Cham 2015, 79-113.
DOI 10.1007/978-3-319-11316-6\_4 |
MR 3525793
[42] Zhang, L., Ning, Z., Wang, Z.:
Distributed filtering for fuzzy time-delay systems with packet dropouts and redundant channels. IEEE Trans. Systems Man Cybernet.: Systems 46 (2016), 559-572.
DOI 10.1109/tsmc.2015.2435700
[43] Zhang, D., Shi, P., Wang, Q.:
Distributed non-fragile filtering for T-S fuzzy systems with event-based communications. Fuzzy Sets Syst. 306 (2017), 137-152.
DOI 10.1016/j.fss.2016.02.009 |
MR 3567161
[44] Zou, L., Wang, Z., Gao, H., Liu, X.:
Event-triggered state estimation for complex networks with mixed time delays via sampled data information: the continuous-time case. IEEE Trans. Cybernet. 45 (2015), 2804-2815.
DOI 10.1109/tcyb.2014.2386781
[45] Zhang, S., Wang, Z., Ding, D., Wei, G., Alsaadi, F. E., Hayat, T.:
A gain-scheduling approach to nonfragile $H_{\infty}$ fuzzy control subject to fading channels. IEEE Trans. Fuzzy Syst. 26 (2018), 142-154.
DOI 10.1109/tfuzz.2016.2641023
[46] Zhe, D., Zheng, Y.:
Finite-horizon robust Kalman filtering for uncertain discrete time-varying systems with uncertain-covariance white noises. IEEE Signal Process. Lett. 13 (2006), 493-496.
DOI 10.1109/lsp.2006.873148
[47] Zhang, X., Han, Q., Ge, X., Ding, D., Ding, L., Yue, D., Peng, C.:
Networked control systems: a survey of trends and techniques. IEEE/CAA J. Automat. Sinica (2019), 1-17.
DOI 10.1109/JAS.2019.1911651 |
MR 3748030
[48] Zuo, Z., Han, Q., Ning, B., Ge, X., Zhang, X.:
An overview of recent advances in fixed-time cooperative control of multi-agent systems. IEEE Trans. Industr. Inform. 14 (2018), 2322-2334.
DOI 10.1109/tii.2018.2817248 |
MR 3932129