Previous |  Up |  Next

Article

Keywords:
nonlinear observer; delayed-output system; finite element method
Summary:
This paper presents a computational procedure for the design of an observer of a nonlinear system. Outputs can be delayed, however, this delay must be known and constant. The characteristic feature of the design procedure is computation of a solution of a partial differential equation. This equation is solved using the finite element method. Conditions under which existence of a solution is guaranteed are derived. These are formulated by means of theory of partial differential equations in $L^2$-space. Three examples demonstrate viability of this approach and provide a comparison with the solution method based on expansions into Taylor polynomials.
References:
[1] G., Birkhoff,, M., Lane, S.: A Survey of Modern Algebra. CRC Press, 2017. DOI 10.1201/9781315275499 | MR 0054551
[2] A., Borri,, F., Cacace,, De, Gaetano, A., A., Germani,, C., Manes,, P., Palumbo,, S., Panunzi,, P., Pepe,: Luenberger-like observers for nonlinear time-delay systems with application to the artificial pancreas: The attainment of good performance. IEEE Control Syst. 37 (2017), 4, 33-49. DOI 10.1109/mcs.2017.2696759 | MR 3701062
[3] F., Cacace,, A., Germani,, C., Manes,: An observer for a class of nonlinear systems with time varying observation delay. Systems Control Lett. 59 (2010), 305-312. DOI 10.1016/j.sysconle.2010.03.005 | MR 2668922 | Zbl 1191.93016
[4] F., Cacace,, A., Germani,, C., Manes,: A chain observer for nonlinear systems with multiple time-varying measurement delays. SIAM J. Control Optim. 52 (2014), 1862-1885. DOI 10.1137/120876472 | MR 3213788
[5] S., Čelikovský,, B., Rehák,: Output regulation problem with nonhyperbolic zero dynamics: Femlab-based approach. IFAC Proc. Vol. 37 (2004), 21, 651-656. DOI 10.1016/S1474-6670(17)30544-X
[6] S., Čelikovský,, A., Torres-Munoz, J., A., Dominguez-Bocanegra,: Adaptive high gain observer extension and its application to bioprocess monitoring. Kybernetika 54 (2018), 1, 155-174. DOI 10.14736/kyb-2018-1-0155 | MR 3780961
[7] M., Farza,, O., Hernández-González,, T., Ménard,, B., Targui,, M., M'Saad,, C.-M., Astorga-Zaragoza,: Cascade observer design for a class of uncertain nonlinear systems with delayed outputs. Automatica 89 (2018), 125-134. DOI 10.1016/j.automatica.2017.12.012 | MR 3762040
[8] A., Germani,, C., Manes,, P., Pepe,: A new approach to state observation of nonlinear systems with delayed output. IEEE Trans. Automat Control 47 /2002), 1, 96-101. MR 1879694
[9] N., Kazantzis,, C., Kravaris,: Nonlinear observer design using Lyapunov's auxiliary theorem. Systems Control Lett. 34 (1998), 241-247. DOI 10.1016/s0167-6911(98)00017-6 | MR 1639021
[10] N., Kazantzis,, R., Wright,: Nonlinear observer design in the presence of delayed output measurements. Systems Control Lett. 54 (2005), 877-886. DOI 10.1016/j.sysconle.2004.12.005 | MR 2152866
[11] H., Khalil,: Nonlinear Systems. Prentice Hall, New Jersey 2001. Zbl 1194.93083
[12] V., Lynnyk,, B., Rehák,: Design of a nonlinear observer using the finite element method with application to a biological system. Cybernet. Physics 8 (2019), 292-297. DOI 10.35470/2226-4116-2019-8-4-292-297
[13] B., Rehák,: Alternative method of solution of the regulator equation: {L2} -space approach. Asian J. Control 14 (2011), 1150-1154. DOI 10.1002/asjc.416 | MR 2955458
[14] B., Rehák,: Sum-of-squares based observer design for polynomial systems with a known fixed time delay. Kybernetika 51 (2015), 856-873. DOI 10.14736/kyb-2015-5-0856 | MR 3445988
[15] B., Rehák,: Observer design for a time delay system via the {Razumikhin} approach. Asian J. Control 19 (2017), 6, 2226-2231. DOI 10.1002/asjc.1507 | MR 3730209
[16] B., Rehák,: Finite-element based observer design for nonlinear systems with delayed measurements. IFAC-PapersOnLine 51 (2018), 14, 201-206. DOI 10.1016/j.ifacol.2018.07.223
[17] B., Rehák,, J., Orozco-Mora,, S., Čelikovský,, J., Ruiz-León,: Real-time error-feedback output regulation of nonhyperbolically nonminimum phase system. In: 2007 American Control Conference 2007, pp. 3789-3794. DOI 10.1109/acc.2007.4282643
[18] B., Rehák,, S., Čelikovský,: Numerical method for the solution of the regulator equation with application to nonlinear tracking. Automatica 44 (2008), 5, 1358-1365. DOI 10.1016/j.automatica.2007.10.015 | MR 2531803
[19] B., Rehák,, S., Čelikovský,, J., Ruiz-León,, J., Orozco-Mora,: A comparison of two {Fem}-based methods for the solution of the nonlinear output regulation problem. Kybernetika 45 (2009), 427-444. MR 2543132
[20] H.-G., Roos,, M., Stynes,, L., Tobiska,: Numerical Methods for Singularly Perturbed Differential Equations. Springer, Berlin 1996. DOI 10.1007/978-3-662-03206-0 | MR 1477665
[21] N., Sakamoto,, B., Rehák,: Iterative methods to compute center and center-stable manifolds with application to the optimal output regulation problem. In: Proc. 50th IEEE Conference on Decision and Control and European Control Conference (CDC-ECC), Orlando 2011. DOI 10.1109/cdc.2011.6161089
[22] N., Sakamoto,, B., Rehák,, K., Ueno,: Nonlinear Luenberger observer design via invariant manifold computation. In: Proc. 19th IFAC World Congress, 2014, Cape Town 2014. DOI 10.3182/20140824-6-za-1003.01103
[23] T., Tran, A., S., Suzuki,, N., Sakamoto,: Nonlinear optimal control design considering a class of system constraints with validation on a magnetic levitation system. IEEE Control Systems Lett. 1 (2017), 2, 418-423. DOI 10.1109/lcsys.2017.2717932
[24] Y., Yu,, Y., Shen,: Robust sampled-data observer design for Lipschitz nonlinear systems. Kybernetika 54 (2018), 4, 699-717. DOI 10.14736/kyb-2018-4-0699 | MR 3863251
Partner of
EuDML logo