Previous |  Up |  Next

Article

Keywords:
Pell number; Pell-Lucas number; linear form in logarithms; continued fraction; reduction method
Summary:
In this paper, we find all Pell and Pell-Lucas numbers written in the form $-2^a-3^b+5^c$, in nonnegative integers $a$, $b$, $c$, with $0\leq \max \{a,b\}\leq c$.
References:
[1] Bravo, E. F., Bravo, J. J.: Powers of two as sums of three Fibonacci numbers. Lith. Math. J. 55 (2015), 301-311. DOI 10.1007/s10986-015-9282-z | MR 3379028 | Zbl 1356.11009
[2] Bravo, J. J., Das, P., Guzmán, S., Laishram, S.: Powers in products of terms of Pell's and Pell-Lucas sequences. Int. J. Number Theory 11 (2015), 1259-1274. DOI 10.1142/S1793042115500682 | MR 3340693 | Zbl 1390.11068
[3] Bugeaud, Y., Mignotte, M., Siksek, S.: Classical and modular approaches to exponential Diophantine equations. I: Fibonacci and Lucas perfect powers. Ann. Math. (2) 163 (2006), 969-1018. DOI 10.4007/annals.2006.163.969 | MR 2215137 | Zbl 1113.11021
[4] Dujella, A., Pethő, A.: A generalization of a theorem of Baker and Davenport. Q. J. Math., Oxf. II. Ser. 49 (1998), 291-306. DOI 10.1093/qjmath/49.195.291 | MR 1645552 | Zbl 0911.11018
[5] Koshy, T.: Fibonacci and Lucas Numbers with Applications. Pure and Applied Mathematics, A Wiley-Interscience Series of Texts, Monographs, and Tracts, Wiley, New York (2001). DOI 10.1002/9781118033067 | MR 1855020 | Zbl 0984.11010
[6] Luca, F.: Fibonacci numbers of the form $k^2+k+2$. Applications of Fibonacci Numbers, Volume 8 F. T. Howard Kluwer Academic Publishers, Dordrecht (1999), 241-249. DOI 10.1007/978-94-011-4271-7_24 | MR 1737677 | Zbl 0979.11012
[7] Luca, F., Szalay, L.: Fibonacci numbers of the form $p^a\pm p^b+1$. Fibonacci Q. 45 (2007), 98-103. MR 2407759 | Zbl 1228.11021
[8] Matveev, E. M.: An explicit lower bound for a homogeneous rational linear form in logarithms of algebraic numbers. II. Izv. Math. 64 (2000), 1217-1269 English. Russian original translation from Izv. Ross. Akad. Nauk, Ser. Mat. 64 2000 125-180. DOI 10.1070/IM2000v064n06ABEH000314 | MR 1817252 | Zbl 1013.11043
[9] McDaniel, W. L.: Triangular numbers in the Pell sequence. Fibonacci Q. 34 (1996), 105-107. MR 1386977 | Zbl 0860.11007
[10] Pethő, A.: The Pell sequence contains only trivial perfect powers. Sets, Graphs and Numbers G. Halász, et al. Colloq. Math. Soc. János Bolyai 60, North-Holland Publishing Company, Amsterdam (1992), 561-568. MR 1218218 | Zbl 0790.11021
[11] Robbins, N.: Fibonacci numbers of the forms $pX^2\pm 1$, $pX^3\pm 1,$ where $p$ is prime. Applications of Fibonacci Numbers Kluwer Acad. Publ., Dordrecht (1988), 77-88. DOI 10.1007/978-94-015-7801-1_9 | MR 0951908 | Zbl 0647.10013
Partner of
EuDML logo