Previous |  Up |  Next

Article

Keywords:
$*$-regular ring; representable; unit-regular
Summary:
We show that any semiartinian $*$-regular ring $R$ is unit-regular; if, in addition, $R$ is subdirectly irreducible then it admits a representation within some inner product space.
References:
[1] Baccella, G., Spinosa, L.: $K_0$ of semiartinian von Neumann regular rings. Direct finiteness versusunit-regularity. Algebr. Represent. Theory 20 (2017), 1189–1213. DOI 10.1007/s10468-017-9682-3 | MR 3707911
[2] Berberian, S.K.: Baer *-rings. Springer, Grundlehren 195, Berlin, 1972. MR 0429975
[3] Goodearl, K.R.: Von Neumann Regular Rings. 2nd ed., Krieger, Malabar, 1991. MR 1150975
[4] Gross, H.: Quadratic Forms in Infinite Dimensional Vector spaces. Birkhäuser, Basel, 1979. MR 0537283
[5] Handelman, D.: Finite Rickart C$^*$-algebras and their properties. Adv. in Math. Suppl. Stud., vol. 4, Academic Press, New York-London, Studies in analysis ed., 1979, pp. 171–196. MR 0546806
[6] Herrmann, C.: Varieties of $*$-regular rings. http://arxiv.org/abs/1904.04505
[7] Herrmann, C.: On the equational theory of projection lattices of finitevon Neumann factors. J. Symbolic Logic 75 (3) (2010), 1102–1110. DOI 10.2178/jsl/1278682219 | MR 2723786
[8] Herrmann, C.: Direct finiteness of representable regular $*$-rings. Algebra Universalis 80 (1) (2019), 5 pp., http://arxiv.org/abs/1904.04505 MR 3904443
[9] Herrmann, C., Semenova, M.V.: Rings of quotients of finite AW$^*$-algebras. Representation and algebraic approximation. Algebra Logika 53 (4) (2014), 466–504, 550–551, (Russian), translation inAlgebra Logic 53 (2014), no. 4, 298–322. DOI 10.1007/s10469-014-9292-7 | MR 3309850
[10] Herrmann, C., Semenova, M.V.: Linear representations of regular rings and complemented modular lattices with involution. Acta Sci. Math. (Szeged) 82 (3–4) (2016), 395–442. DOI 10.14232/actasm-015-283-5 | MR 3616186
[11] Jacobson, N.: Structure of Rings. AMS Col. Publ. XXXVII, Amer. Math. Soc., Providence, RI, 1956. MR 0081264 | Zbl 0073.02002
[12] Micol, F.: On representability of $\ast $-regular rings and modular ortholattices. Ph.D. thesis, TU Darmstadt, January 2003, http://elib.tu-darmstadt.de/diss/000303/diss.pdf
[13] Wehrung, F.: A uniform refinement property for congruence lattices. Proc. Amer. Math. Soc. 127 (1999), 363–370. DOI 10.1090/S0002-9939-99-04558-X | MR 1468207 | Zbl 0902.06006
Partner of
EuDML logo