[2] Gubbiotti, G., Nucci, M.C.:
Are all classical superintegrable systems in two-dimensional space linearizable?. J. Math. Phys. 58 (1) (2017), 14 pp., 012902.
DOI 10.1063/1.4974264 |
MR 3600036
[3] Jovanović, B.:
Symmetries of line bundles and Noether theorem for time-dependent nonholonomic systems. J. Geom. Mech. 10 (2) (2018), 173–187.
DOI 10.3934/jgm.2018006 |
MR 3808246
[4] Lie, S.: Theorie der Transformationsgruppen, Teil I–III. Leipzig: Teubner, 1888, 1890, 1893.
[5] López, C., Martínez, E., Rañada, M.F.:
Dynamical symmetries, non-Cartan symmetries and superintegrability of the $n$-dimensional harmonic oscillator. J. Phys. A 32 (7) (1999), 1241–1249.
DOI 10.1088/0305-4470/32/7/013 |
MR 1690665
[6] Marchesiello, A., Šnobl, L.:
Superintegrable 3D systems in a magnetic field corresponding to Cartesian separation of variables. J. Phys. A 50 (24) (2017), 24 pp., 245202.
DOI 10.1088/1751-8121/aa6f68 |
MR 3659131
[7] Marchesiello, A., Šnobl, L.:
An infinite family of maximally superintegrable systems in a magnetic field with higher order integrals. SIGMA Symmetry Integrability Geom. Methods Appl. 14 (092) (2018), 11 pp.
MR 3849972
[10] Olver, P.J.:
Applications of Lie groups to differential equations. Graduate Texts in Mathematics, vol. 107, Springer-Verlag, New York, 1993, second edition.
MR 1240056
[11] Prince, G.:
Toward a classification of dynamical symmetries in Lagrangian systems. Proceedings of the IUTAM-ISIMM symposium on modern developments in analytical mechanics, Vol. II (Torino, 1982, vol. 117, 1983, pp. 687–691.
MR 0773518