[1] Bao, D., Chern, S.-S., Shen, Z.:
An Introduction to Riemann-Finsler Geometry. Springer Science+Business Media, New York, 2000.
MR 1747675 |
Zbl 0954.53001
[2] Deng, S.:
Homogeneous Finsler Spaces. Springer Science+Business Media, New York, 2012.
MR 2962626
[3] Dušek, Z.: Geodesic graphs in homogeneous Randers spaces. Comment. Math. Univ. Carolinae, to appear.
[4] Dušek, Z.:
The affine approach to homogeneous geodesics in homogeneous Finsler spaces. Arch. Math. (Brno) 54 (5) (2018), 257–263.
DOI 10.5817/AM2018-5-257 |
MR 3887353
[5] Dušek, Z.:
The existence of homogeneous geodesics in special homogeneous Finsler spaces. Matematički Vesnik 71 (1–2) (2019), 16–22.
MR 3895904
[6] Kowalski, O., Nikčević, S., Vlášek, Z.:
Homogeneous geodesics in homogeneous Riemannian manifolds - Examples. Preprint Reihe Mathematik, TU Berlin, No. 665/2000.
MR 1801906
[7] Kowalski, O., Szenthe, J.:
On the existence of homogeneous geodesics in homogeneous Riemannian manifolds. Geom. Dedicata 84 (2001), 331–332.
DOI 10.1023/A:1010308826374 |
MR 1825363
[8] Kowalski, O., Vanhecke, L.:
Riemannian manifolds with homogeneous geodesics. Boll. Un. Math. Ital. B (7) 5 (1991), 189–246.
MR 1110676 |
Zbl 0731.53046
[9] Kowalski, O., Vlášek, Z.:
Homogeneous Riemannian manifolds with only one homogeneous geodesic. Publ. Math. Debrecen 62 (3–4) (2003), 437–446.
MR 2008107
[12] Yan, Z., Deng, S.:
Existence of homogeneous geodesics on homogeneous Randers spaces. Houston J. Math. 44 (2) (2018), 481–493.
MR 3845106