[1] Ascher, U. M., Mattheij, R. M. M., Russell, R. D.:
Numerical Solution of Boundary Value Problems for Ordinary Differential Equations. Classics in Applied Mathematics 13, SIAM, Society for Industrial and Applied Mathematics, Philadelphia (1995).
DOI 10.1137/1.9781611971231 |
MR 1351005 |
Zbl 0843.65054
[3] Bender, C. M., Orszag, S. A.:
Advanced Mathematical Methods for Scientists and Engineers. International Series in Pure and Applied Mathematics, McGraw-Hill Book, New York (1978).
MR 0538168 |
Zbl 0417.34001
[4] Cash, J. R.:
Numerical integration of nonlinear two-point boundary value problems using iterated deferred corrections. I. A survey and comparison of some one-step formulae. Comput. Math. Appl., Part A 12 (1986), 1029-1048.
DOI 10.1016/0898-1221(86)90009-X |
MR 0862027 |
Zbl 0618.65071
[5] Cash, J. R.:
On the numerical integration of nonlinear two-point boundary value problems using iterated deferred corrections. II. The development and analysis of highly stable deferred correction formulae. SIAM J. Numer. Anal. 25 (1988), 862-882.
DOI 10.1137/0725049 |
MR 0954789 |
Zbl 0658.65070
[7] Doğan, N., Ertürk, V. S., Akı{n}, Ö.:
Numerical treatment of singularly perturbed two-point boundary value problems by using differential transformation method. Discrete Dyn. Nat. Soc. 2012 (2012), Article ID 579431, 10 pages.
DOI 10.1155/2012/579431 |
MR 2914044 |
Zbl 1244.65119
[10] Keller, H. B.:
Numerical Methods for Two-Point Boundary Value Problems. Blaisdell Publishing Company, Waltham (1968).
MR 0230476 |
Zbl 0172.19503
[11] Khuri, S. A., Sayfy, A.:
Self-adjoint singularly perturbed boundary value problems: an adaptive variational approach. Math. Methods Appl. Sci. 36 (2013), 1070-1079.
DOI 10.1002/mma.2664 |
MR 3066728 |
Zbl 1290.65064
[13] Liu, C.-S.:
Efficient shooting methods for the second-order ordinary differential equations. CMES, Comput. Model. Eng. Sci. 15 (2006), 69-86.
MR 2265974 |
Zbl 1152.65453
[14] Liu, C.-S.:
The Lie-group shooting method for singularly perturbed two-point boundary value problems. CMES, Comput. Model. Eng. Sci. 15 (2006), 179-196.
MR 2269392 |
Zbl 1152.65452