Previous |  Up |  Next

Article

Title: Countable compactness of lexicographic products of GO-spaces (English)
Author: Kemoto, Nobuyuki
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 60
Issue: 3
Year: 2019
Pages: 421-439
Summary lang: English
.
Category: math
.
Summary: We characterize the countable compactness of lexicographic products of GO-spaces. Applying this characterization about lexicographic products, we see: \begin{itemize} \item[$\circ$] the lexicographic product $X^2$ of a countably compact GO-space $X$ need not be countably compact, \item[$\circ$] $\omega_1^2$, $\omega_1\times \omega$, $(\omega+1)\times (\omega_1+1)\times\omega_1\times \omega$, $\omega_1\times \omega\times \omega_1$, $\omega_1\times \omega\times\omega_1\times \omega\times \cdots $, $\omega_1\times \omega^\omega$, $\omega_1\times \omega^\omega\times (\omega+1)$, $\omega_1^\omega$, $\omega_1^\omega\times (\omega_1+1)$ and $\prod_{n\in \omega}\omega_{n+1}$ are countably compact, \item[$\circ$] $\omega\times \omega_1$, $(\omega+1)\times (\omega_1+1)\times\omega\times \omega_1$, $\omega\times \omega_1\times\omega\times \omega_1\times \cdots $, $\omega\times \omega_1^\omega$, $\omega_1\times \omega^\omega\times \omega_1$, $\omega_1^\omega\times \omega$, $\prod_{n\in \omega}\omega_{n}$ and $\prod_{n\leq \omega}\omega_{n+1}$ are not countably compact, \item[$\circ$] $[0,1)_\mathbb R\times \omega_1$, where $[0,1)_\mathbb R$ denotes the half open interval in the real line $\mathbb R$, is not countably compact, \item[$\circ$] $\omega_1\times [0,1)_\mathbb R$ is countably compact, \item[$\circ$] both $\mathbb S\times \omega_1$ and $\omega_1\times \mathbb S$ are not countably compact, \item[$\circ$] $\omega_1\times (-\omega_1)$ is not countably compact, where for a GO-space $X=\langle X,<_X,\tau_X\rangle$, $-X$ denotes the GO-space $\langle X,>_X,\tau_X\rangle$. \end{itemize} (English)
Keyword: lexicographic product
Keyword: GO-space
Keyword: LOTS
Keyword: countably compact product
MSC: 54B05
MSC: 54B10
MSC: 54C05
MSC: 54F05
idZBL: Zbl 07144904
idMR: MR4034442
DOI: 10.14712/1213-7243.2019.020
.
Date available: 2019-10-29T13:04:08Z
Last updated: 2021-10-04
Stable URL: http://hdl.handle.net/10338.dmlcz/147853
.
Reference: [1] Engelking R.: General Topology.Sigma Series in Pure Mathematics, 6, Herdermann Verlag, Berlin, 1989. Zbl 0684.54001, MR 1039321
Reference: [2] Faber M. J.: Metrizability in Generalized Ordered Spaces.Mathematical Centre Tracts, 53, Mathematisch Centrum, Amsterdam, 1974. Zbl 0282.54017, MR 0418053
Reference: [3] Kemoto N.: Normality of products of GO-spaces and cardinals.Topology Proc. 18 (1993), 133–142. MR 1305127
Reference: [4] Kemoto N.: The lexicographic ordered products and the usual Tychonoff products.Topology Appl. 162 (2014), 20–33. MR 3144657, 10.1016/j.topol.2013.11.005
Reference: [5] Kemoto N.: Normality, orthocompactness and countable paracompactness of products of GO-spaces.Topology Appl. 231 (2017), 276–291. MR 3712968, 10.1016/j.topol.2017.09.026
Reference: [6] Kemoto N.: Lexicographic products of GO-spaces.Topology Appl. 232 (2017), 267–280. MR 3720898, 10.1016/j.topol.2017.10.017
Reference: [7] Kemoto N.: Paracompactness of lexicographic products of GO-spaces.Topology Appl. 240 (2018), 35–58. MR 3784395, 10.1016/j.topol.2018.03.004
Reference: [8] Kemoto N.: The structure of the linearly ordered compactifications of GO-spaces.Topology Proc. 52 (2018), 189–204. MR 3734101
Reference: [9] Kunen K.: Set Theory. An Introduction to Independence Proofs.Studies in Logic and the Foundations of Mathematics, 102, North-Holland Publishing, Amsterdam, 1980. Zbl 0534.03026, MR 0597342
Reference: [10] Lutzer D. J.: On generalized ordered spaces.Dissertationes Math. Rozprawy Mat. 89 (1971), 32 pages. MR 0324668
Reference: [11] Miwa T., Kemoto N.: Linearly ordered extensions of GO-spaces.Topology Appl. 54 (1993), no. 1–3, 133–140. MR 1255783, 10.1016/0166-8641(93)90057-K
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_60-2019-3_10.pdf 340.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo