Title:
|
Countable compactness of lexicographic products of GO-spaces (English) |
Author:
|
Kemoto, Nobuyuki |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
60 |
Issue:
|
3 |
Year:
|
2019 |
Pages:
|
421-439 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We characterize the countable compactness of lexicographic products of GO-spaces. Applying this characterization about lexicographic products, we see: \begin{itemize} \item[$\circ$] the lexicographic product $X^2$ of a countably compact GO-space $X$ need not be countably compact, \item[$\circ$] $\omega_1^2$, $\omega_1\times \omega$, $(\omega+1)\times (\omega_1+1)\times\omega_1\times \omega$, $\omega_1\times \omega\times \omega_1$, $\omega_1\times \omega\times\omega_1\times \omega\times \cdots $, $\omega_1\times \omega^\omega$, $\omega_1\times \omega^\omega\times (\omega+1)$, $\omega_1^\omega$, $\omega_1^\omega\times (\omega_1+1)$ and $\prod_{n\in \omega}\omega_{n+1}$ are countably compact, \item[$\circ$] $\omega\times \omega_1$, $(\omega+1)\times (\omega_1+1)\times\omega\times \omega_1$, $\omega\times \omega_1\times\omega\times \omega_1\times \cdots $, $\omega\times \omega_1^\omega$, $\omega_1\times \omega^\omega\times \omega_1$, $\omega_1^\omega\times \omega$, $\prod_{n\in \omega}\omega_{n}$ and $\prod_{n\leq \omega}\omega_{n+1}$ are not countably compact, \item[$\circ$] $[0,1)_\mathbb R\times \omega_1$, where $[0,1)_\mathbb R$ denotes the half open interval in the real line $\mathbb R$, is not countably compact, \item[$\circ$] $\omega_1\times [0,1)_\mathbb R$ is countably compact, \item[$\circ$] both $\mathbb S\times \omega_1$ and $\omega_1\times \mathbb S$ are not countably compact, \item[$\circ$] $\omega_1\times (-\omega_1)$ is not countably compact, where for a GO-space $X=\langle X,<_X,\tau_X\rangle$, $-X$ denotes the GO-space $\langle X,>_X,\tau_X\rangle$. \end{itemize} (English) |
Keyword:
|
lexicographic product |
Keyword:
|
GO-space |
Keyword:
|
LOTS |
Keyword:
|
countably compact product |
MSC:
|
54B05 |
MSC:
|
54B10 |
MSC:
|
54C05 |
MSC:
|
54F05 |
idZBL:
|
Zbl 07144904 |
idMR:
|
MR4034442 |
DOI:
|
10.14712/1213-7243.2019.020 |
. |
Date available:
|
2019-10-29T13:04:08Z |
Last updated:
|
2021-10-04 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/147853 |
. |
Reference:
|
[1] Engelking R.: General Topology.Sigma Series in Pure Mathematics, 6, Herdermann Verlag, Berlin, 1989. Zbl 0684.54001, MR 1039321 |
Reference:
|
[2] Faber M. J.: Metrizability in Generalized Ordered Spaces.Mathematical Centre Tracts, 53, Mathematisch Centrum, Amsterdam, 1974. Zbl 0282.54017, MR 0418053 |
Reference:
|
[3] Kemoto N.: Normality of products of GO-spaces and cardinals.Topology Proc. 18 (1993), 133–142. MR 1305127 |
Reference:
|
[4] Kemoto N.: The lexicographic ordered products and the usual Tychonoff products.Topology Appl. 162 (2014), 20–33. MR 3144657, 10.1016/j.topol.2013.11.005 |
Reference:
|
[5] Kemoto N.: Normality, orthocompactness and countable paracompactness of products of GO-spaces.Topology Appl. 231 (2017), 276–291. MR 3712968, 10.1016/j.topol.2017.09.026 |
Reference:
|
[6] Kemoto N.: Lexicographic products of GO-spaces.Topology Appl. 232 (2017), 267–280. MR 3720898, 10.1016/j.topol.2017.10.017 |
Reference:
|
[7] Kemoto N.: Paracompactness of lexicographic products of GO-spaces.Topology Appl. 240 (2018), 35–58. MR 3784395, 10.1016/j.topol.2018.03.004 |
Reference:
|
[8] Kemoto N.: The structure of the linearly ordered compactifications of GO-spaces.Topology Proc. 52 (2018), 189–204. MR 3734101 |
Reference:
|
[9] Kunen K.: Set Theory. An Introduction to Independence Proofs.Studies in Logic and the Foundations of Mathematics, 102, North-Holland Publishing, Amsterdam, 1980. Zbl 0534.03026, MR 0597342 |
Reference:
|
[10] Lutzer D. J.: On generalized ordered spaces.Dissertationes Math. Rozprawy Mat. 89 (1971), 32 pages. MR 0324668 |
Reference:
|
[11] Miwa T., Kemoto N.: Linearly ordered extensions of GO-spaces.Topology Appl. 54 (1993), no. 1–3, 133–140. MR 1255783, 10.1016/0166-8641(93)90057-K |
. |