Previous |  Up |  Next

Article

Keywords:
Bernoulli polynomials; Nørlund polynomials; Apostol-Bernoulli polynomials; Apostol-Euler polynomials; Apostol-Genocchi polynomials; generating functions; Appell sequences
Summary:
One can find in the mathematical literature many recent papers studying the generalized Apostol-Bernoulli, Apostol-Euler and Apostol-Genocchi polynomials, defined by means of generating functions. In this article we clarify the range of parameters in which these definitions are valid and when they provide essentially different families of polynomials. In particular, we show that, up to multiplicative constants, it is enough to take as the “main family” those given by \[ \Big ( \frac{2}{\lambda e^t+1} \Big )^\alpha e^{xt} = \sum _{n=0}^{\infty } \mathcal{E}^{(\alpha )}_{n}(x;\lambda ) \frac{t^n}{n!}\,, \qquad \lambda \in \mathbb{C}\setminus \lbrace -1\rbrace \,, \] and as an “exceptional family” \[ \Big ( \frac{t}{e^t-1} \Big )^\alpha e^{xt} = \sum _{n=0}^{\infty } \mathcal{B}^{(\alpha )}_{n}(x) \frac{t^n}{n!}\,, \] both of these for $\alpha \in \mathbb{C}$.
References:
[1] Apostol, T.: On the Lerch Zeta function, Addendum. Pacific J. Math. 1 (1951), 161–167, Pacific J. Math. 2 (1952), 10. DOI 10.2140/pjm.1951.1.161 | MR 0043843
[2] Bayad, A.: Fourier expansions for Apostol-Bernoulli, Apostol-Euler and Apostol-Genocchi polynomials. Math. Comp. 80 (2011), 2219–2221. DOI 10.1090/S0025-5718-2011-02476-2 | MR 2813356
[3] Hernández-Llanos, P., Quintana, Y., Urieles, A.: About extensions of generalized Apostol-type polynomials. Results Math. 68 (2015), 203–225. DOI 10.1007/s00025-014-0430-2 | MR 3391500
[4] Horadam, A.F.: Genocchi polynomials. Applications of Fibonacci Numbers (G. E. Bergum, A. N. Philippou, Horadam, A. F., eds.), vol. 4, Kluwer, 1991, pp. 145–166. MR 1193711
[5] Kurt, B.: Some relationships between the generalized Apostol-Bernoulli and Apostol-Euler polynomials. Turkish Journal of Analysis and Number Theory 1 (2013), 54–58. DOI 10.12691/tjant-1-1-11
[6] Luo, Q.-M.: Fourier expansions and integral representations for the Apostol-Bernoulli and Apostol-Euler polynomials. Math. Comp. 78 (2009), 2193–2208. DOI 10.1090/S0025-5718-09-02230-3 | MR 2521285
[7] Luo, Q.-M., Srivastava, H.M.: Some generalizations of the Apostol-Bernoulli and Apostol-Euler polynomials. J. Math. Anal. Appl. 308 (2005), 290–302. DOI 10.1016/j.jmaa.2005.01.020 | MR 2142419
[8] Luo, Q.-M., Srivastava, H.M.: Some generalizations of the Apostol-Genocchi polynomials and the Stirling numbers of the second kind. Appl. Math. Comput. 217 (2011), 5702–5728. MR 2770190
[9] Navas, L.M., Ruiz, F.J., Varona, J.L.: Asymptotic estimates for Apostol-Bernoulli and Apostol-Euler polynomials. Math. Comp. 81 (2012), 1707–1722. DOI 10.1090/S0025-5718-2012-02568-3 | MR 2904599
[10] Nørlund, N.E.: Mémoire sur les polynômes de Bernoulli. Acta Math. 43 (1922), 121–196. DOI 10.1007/BF02401755 | MR 1555176
[11] Nørlund, N.E.: Vorlesungen über Differenzenrechnung. 1st ed., Springer-Verlag, Berlin-Heidelberg, 1924. MR 1549596
[12] Srivastava, H.M., Choi, J.: Zeta and $q$-zeta functions and associated series and integrals. Elsevier, 2012. MR 3294573
[13] Srivastava, H.M., Kurt, B., Simsek, Y.: Corrigendum: Some families of Genocchi type polynomials and their interpolation functions. Integral Transforms Spec. Funct. 23 (2012), 939–940. DOI 10.1080/10652469.2012.690950 | MR 2998907
Partner of
EuDML logo