Previous |  Up |  Next

Article

Keywords:
$GF$-closed ring; $G_C$-flat module; $G_C$-flat dimension; semidualizing module
Summary:
In this paper, we study some properties of $G_C$-flat $R$-modules, where $C$ is a semidualizing module over a commutative ring $R$ and we investigate the relation between the $G_C$-yoke with the $C$-yoke of a module as well as the relation between the $G_C$-flat resolution and the flat resolution of a module over $GF$-closed rings. We also obtain a criterion for computing the $G_C$-flat dimension of modules.
References:
[1] Bennis D.: Rings over which the class of Gorenstein flat modules is closed under extentions. Comm. Algebra 37 (2009), no. 3, 855–868. DOI 10.1080/00927870802271862 | MR 2503181
[2] Christensen L. W.: Gorenstein Dimensions. Lecture Notes in Mathematics, 1747, Springer, Berlin, 2000. DOI 10.1007/BFb0103984 | MR 1799866
[3] Christensen L. W., Frankild A., Holm H.: On Gorenstein projective, injective and flat dimensions a functorial description with applications. J. Algebra 302 (2006), no. 1, 231–279. DOI 10.1016/j.jalgebra.2005.12.007 | MR 2236602
[4] Enochs E., Jenda O. M. G.: Relative Homological Algebra. De Gruyter Expositions in Mathematics, 30, Walter de Gruyter, Berlin, 2000. MR 1753146 | Zbl 0952.13001
[5] Enochs E., Jenda O. M. G., Torrecillas B.: Gorenstein flat modules. Nanjing Daxue Xuebao Shuxue Bannian Kan 10 (1993), no. 1, 1–9. MR 1248299
[6] Foxby H.-B.: Gorenstein modules and related modules. Math. Scand. 31 (1972), 267–284. DOI 10.7146/math.scand.a-11434 | MR 0327752
[7] Golod E. S.: $G$-dimension and generalized perfect ideals. Algebraic geometry and its applications, Trudy Mat. Inst. Steklov. 165 (1984), 62–66 (Russian). MR 0752933
[8] Holm H.: Gorenstein homological dimensions. J. Pure Appl. Algebra 189 (2004), no. 1–3, 167–193. DOI 10.1016/j.jpaa.2003.11.007 | MR 2038564
[9] Holm H., Jørgensen P.: Semidualizing modules and related Gorenstein homological dimensions. J. Pure. Appl. Algebra 205 (2006), no. 2, 423–445. DOI 10.1016/j.jpaa.2005.07.010 | MR 2203625
[10] Holm H., White D.: Foxby equivalence over associative rings. J. Math. Kyoto Univ. 47 (2007), no. 4, 781–808. DOI 10.1215/kjm/1250692289 | MR 2413065
[11] Huang C., Huang Z.: Gorenstein syzygy modules. J. Algebra 324 (2010), no. 12, 3408–3419. DOI 10.1016/j.jalgebra.2010.10.010 | MR 2735390
[12] Liu Z., Yang X.: Gorenstein projective, injective and flat modules. J. Aust. Math. Soc. 87 (2009), no. 3, 395–407. DOI 10.1017/S1446788709000093 | MR 2576573
[13] Rotman J. J.: An Introduction to Homological Algebra. Pure and Applied Mathematics, 85, Academic Press, New York, 1979. MR 0538169 | Zbl 1157.18001
[14] Sather-Wagstaff S., Sharif T., White D.: AB-contexts and stability for Gorenstein flat modules with respect to semidualizing modules. Algebr. Represent. Theory 14 (2011), no. 3, 403–428. DOI 10.1007/s10468-009-9195-9 | MR 2785915
[15] Selvaraj C., Udhayakumar R., Umamaheswaran A.: Gorenstein n-flat modules and their covers. Asian-Eur. J. Math. 7 (2014), no. 3, 1450051, 13 pages. DOI 10.1142/S179355711450051X | MR 3257526
[16] Vasconcelos W. V.: Divisor Theory in Module Categories. North-Holland Mathematics Studies, 14, North-Holland Publishing Co., Amsterdam, American Elsevier Publishing Co., New York, 1974. MR 0498530
[17] White D.: Gorenstein projective dimension with respect to a semidualizing module. J. Commut. Algebra 2 (2010), no. 1, 111–137. DOI 10.1216/JCA-2010-2-1-111 | MR 2607104
Partner of
EuDML logo