[1] Bose, R. C., Shrikhande, S. S.:
On the falsity of Euler’s conjecture about the non-existence of two orthogonal Latin squares of order 4t + 2. Proc. Natl. Acad. Sci. USA 45, 5 (1959), 734–737.
DOI 10.1073/pnas.45.5.734 |
MR 0104590
[2] Bose, R. C., Shrikhande, S. S., Parker, E. T.:
Further results on the construction of mutually orthogonal Latin squares and the falsity of Euler’s conjecture. Canad. J. Math. 12 (1960), 189–203.
DOI 10.4153/CJM-1960-016-5 |
MR 0122729
[4] Colbourn, C. J., Dinitz, J. H.:
Handbook of combinatorial designs (Discrete mathematics and its applications). Chapman and Hall/CRC, 2006.
MR 2246267
[5] Fellmann, E. A.:
Leonhard Euler. Springer, Basel, 2006.
MR 2285279
[6] Graham, R.: Combinatorics: ancient & modern. OUP, Oxford, 2013.
[7] Katrnoška, F.: Latinské čtverce a genetický kód. Pokroky Mat. Fyz. Astronom. 52 (2007), 177–187.
[8] Katrnoška, F., Křížek, M., Somer, L.: Magické čtverce a sudoku. Pokroky Mat. Fyz. Astronom. 53 (2008), 113–124.
[10] Matoušek, J., Nešetřil, J.:
Invitation to discrete mathematics. OUP, Oxford, 2008.
MR 2469243
[11] Matoušek, J., Nešetřil, J.: Kapitoly z diskrétní matematiky. Karolinum, 2010.
[12] Otava, M.: Základní principy navrhování experimentů. Pokroky Mat. Fyz. Astronom. 63 (2018), 196–211.
[13] Packel, E.: The mathematics of games and gambling. The Mathematical Association of America, 1996.
[14] Paige, L. J., Wexler, C.:
A canonical form for incidence matrices of finite projective planes and their associated latin squares. Port. Math. 12 (1953), 105–112.
MR 0060448
[17] Van Lint, J. H., Wilson, R. M.:
A course in combinatorics. Cambridge University Press, 2009.
MR 1871828