[3] Asgharzadeh, A., Valiollahi, R., Raqab, M. Z.:
Stress-strength reliability of Weibull distribution based on progressively censored samples. SORT 35 (2011), 103-124.
MR 2908294 |
Zbl 1284.62144
[7] Basirat, M., Baratpour, S., Ahmadi, J.:
Statistical inferences for stress-strength in the proportional hazard models based on progressive Type-II censored samples. J. Stat. Comput. Simulation 85 (2015), 431-449.
DOI 10.1080/00949655.2013.824449 |
MR 3275457
[12] Dagum, C.: The generation and distribution of income. The Lorenz curve and the Gini ratio. Economie Appliqu{é}e 33 (1980), 327-367.
[14] Dengler, B.: On the Asymptotic Behaviour of the Estimator of Kendall's Tau. Ph.D. Thesis, TU Vienna (2010).
[20] Gupta, R. C., Subramanian, S.:
Estimation of reliability in a bivariate normal distribution with equal coefficients of variation. Commun. Stat., Simulation Comput. 27 (1998), 675-698.
DOI 10.1080/03610919808813503 |
Zbl 0916.62065
[24] Joe, H., Xu, J. J.:
The estimation method of inference functions for margins for multivariate models. Technical Report \#166, University of British Columbia, Vancouver (1996).
DOI 10.14288/1.0225985
[26] Kotz, S., Lumelskii, Y., Pensky, M.:
The Stress-Strength Model and Its Generalizations. Theory and Applications. World Scientific, River Edge (2003).
DOI 10.1142/5015 |
MR 1980497 |
Zbl 1017.62100
[27] Marshall, A. W., Olkin, I.:
Life Distributions. Structure of Nonparametric, Semiparametric, and Parametric Families. Springer Series in Statistics, Springer, New York (2007),\99999DOI99999 10.1007/978-0-387-68477-2 \hyphenation{McGraw}.
MR 2344835 |
Zbl 1304.62019
[28] Mood, A. M., Graybill, F. A., Boes, D. C.:
Introduction to the Theory of Statistics. McGraw-Hill Series in Probability and Statistics, McGraw-Hill Book Company, New York (1974).
MR 0033470 |
Zbl 0277.62002
[34] Pakdaman, Z., Ahmadi, J.:
Stress-strength reliability for $P(X_{r:n_1}. İstatistik 6 (2013), 92-102. MR 3241750
[39] Tahmasebi, S., Jafari, A. A., Afshari, M.:
Concomitants of dual generalized order statistics from Morgenstern type bivariate generalized exponential distribution. J. Stat. Theory Appl. 14 (2015), 1-12.
DOI 10.2991/jsta.2015.14.1.1 |
MR 3341061