Previous |  Up |  Next

Article

Keywords:
copula function; Dagum distribution; generalized order statistics; Farlie-Gumbel-Morgenstern distribution; proportional reversed hazard family; record values
Summary:
The stress-strength model is proposed based on the $m$-generalized order statistics and the corresponding concomitant. For the dependency between $m$-generalized order statistics and its concomitant, a bivariate copula expansion is considered and the stress-strength model is obtained for two special cases of order statistics and upper record values. In the particular case of copula function, the generalized Farlie-Gumbel-Morgenstern bivariate distribution function is considered with proportional reversed hazard functions as marginal functions. Based on the order statistics and record values, two estimators of stress-strength are presented using a procedure similar to the inference functions for margins. Finally, a simulation study is carried out which shows the good performance of the proposed estimators for a finite sample.
References:
[1] Adimari, G., Chiogna, M.: Partially parametric interval estimation of Pr$\{Y>X\}$. Comput. Stat. Data Anal. 51 (2006), 1875-1891. DOI 10.1016/j.csda.2005.12.007 | MR 2307549 | Zbl 1157.62369
[2] Al-Mutairi, D. K., Ghitany, M. E., Kundu, D.: Inferences on stress-strength reliability from weighted Lindley distributions. Commun. Stat., Theory Methods 44 (2015), 4096-4113. DOI 10.1080/03610926.2014.968729 | MR 3406333 | Zbl 1333.62062
[3] Asgharzadeh, A., Valiollahi, R., Raqab, M. Z.: Stress-strength reliability of Weibull distribution based on progressively censored samples. SORT 35 (2011), 103-124. MR 2908294 | Zbl 1284.62144
[4] Bairamov, I., Kotz, S., Bekçi, M.: New generalized Farlie-Gumbel-Morgenstern distributions and concomitants of order statistics. J. Appl. Stat. 28 (2001), 521-536. DOI 10.1080/02664760120047861 | MR 1836732 | Zbl 0991.62032
[5] Baklizi, A.: Estimation of Pr$(X. Commun. Stat., Theory Methods 37 (2008), 692-698 corrigendum ibid. 40 2011 4322-4323. DOI 10.1080/03610920701501921 | MR 2432305 | Zbl 1309.62161
[6] Baklizi, A.: Inference on Pr$(X. ISRN Probab. Stat. 2012 (2012), Article ID 263612, 11 pages. DOI 10.5402/2012/263612 | Zbl 06169692
[7] Basirat, M., Baratpour, S., Ahmadi, J.: Statistical inferences for stress-strength in the proportional hazard models based on progressive Type-II censored samples. J. Stat. Comput. Simulation 85 (2015), 431-449. DOI 10.1080/00949655.2013.824449 | MR 3275457
[8] Beg, M. I., Ahsanullah, M.: Concomitants of generalized order statistics from Farlie-Gumbel-Morgenstern distributions. Stat. Methodol. 5 (2008), 1-20. DOI 10.1016/j.stamet.2007.04.001 | MR 2416936 | Zbl 1248.62076
[9] Bose, A., Gangopadhyay, S.: A note on concomitants of records. Stat. Methodol. 10 (2013), 103-112. DOI 10.1016/j.stamet.2012.07.004 | MR 2974814 | Zbl 1365.62065
[10] Chacko, M., Thomas, P. Y.: Estimation of parameters of bivariate normal distribution using concomitants of record values. Stat. Pap. 49 263-275 (2008). DOI 10.1007/s00362-006-0011-x | MR 2365390 | Zbl 1168.62346
[11] Condino, F., Domma, F., Latorre, G.: Likelihood and Bayesian estimation of $P(Y>X)$ using lower record values from a proportional reversed hazard family. Stat. Pap. 59 (2018), 467-485. DOI 10.1007/s00362-016-0772-9 | MR 3800810 | Zbl 06912421
[12] Dagum, C.: The generation and distribution of income. The Lorenz curve and the Gini ratio. Economie Appliqu{é}e 33 (1980), 327-367.
[13] David, H. A., Nagaraja, H. N.: Order Statistics. Wiley Series in Probability and Statistics, John Wiley & Sons, Chichester (2003). DOI 10.1002/0471722162 | MR 1994955 | Zbl 1053.62060
[14] Dengler, B.: On the Asymptotic Behaviour of the Estimator of Kendall's Tau. Ph.D. Thesis, TU Vienna (2010).
[15] Domma, F., Giordano, S.: A stress-strength model with dependent variables to measure household financial fragility. Stat. Methods Appl. 21 (2012), 375-389. DOI 10.1007/s10260-012-0192-5 | MR 2981655 | Zbl 1255.91328
[16] Domma, F., Giordano, S.: A copula-based approach to account for dependence in stress-strength models. Stat. Pap. 54 (2013), 807-826. DOI 10.1007/s00362-012-0463-0 | MR 3072902 | Zbl 1307.62234
[17] Domma, F., Giordano, S.: Concomitants of $m$-generalized order statistics from generalized Farlie-Gumbel-Morgenstern distribution family. J. Comput. Appl. Math. 294 (2016), 413-435. DOI 10.1016/j.cam.2015.08.022 | MR 3406991 | Zbl 1330.62216
[18] Farlie, D. J. G.: The performance of some correlation coefficients for a general bivariate distribution. Biometrika 47 (1960), 307-323. DOI 10.1093/biomet/47.3-4.307 | MR 0119312 | Zbl 0102.14903
[19] Gradshteyn, I. S., Ryzhik, I. M.: Table of Integrals, Series, and Products. Elsevier/\hskip0ptAcademic Press, Amsterdam (2007). DOI 10.1016/C2009-0-22516-5 | MR 2360010 | Zbl 1208.65001
[20] Gupta, R. C., Subramanian, S.: Estimation of reliability in a bivariate normal distribution with equal coefficients of variation. Commun. Stat., Simulation Comput. 27 (1998), 675-698. DOI 10.1080/03610919808813503 | Zbl 0916.62065
[21] Hanagal, D. D.: Estimation of reliability when stress is censored at strength. Commun. Stat., Theory Methods 26 (1997), 911-919. DOI 10.1080/03610929708831958 | MR 1436086 | Zbl 0917.62081
[22] Jaheen, Z. F.: Empirical Bayes inference for generalized exponential distribution based on records. Commun. Stat., Theory Methods 33 (2004), 1851-1861. DOI 10.1081/STA-120037445 | MR 2065178 | Zbl 1213.62014
[23] Joe, H.: Multivariate Models and Multivariate Dependence Concepts. Monographs on Statistics and Applied Probability 73, Chapman & Hall, London (1997). DOI 10.1201/b13150 | MR 1462613 | Zbl 0990.62517
[24] Joe, H., Xu, J. J.: The estimation method of inference functions for margins for multivariate models. Technical Report \#166, University of British Columbia, Vancouver (1996). DOI 10.14288/1.0225985
[25] Kamps, U.: A concept of generalized order statistics. J. Stat. Plann. Inference 48 (1995), 1-23. DOI 10.1016/0378-3758(94)00147-n | MR 1366370 | Zbl 0838.62038
[26] Kotz, S., Lumelskii, Y., Pensky, M.: The Stress-Strength Model and Its Generalizations. Theory and Applications. World Scientific, River Edge (2003). DOI 10.1142/5015 | MR 1980497 | Zbl 1017.62100
[27] Marshall, A. W., Olkin, I.: Life Distributions. Structure of Nonparametric, Semiparametric, and Parametric Families. Springer Series in Statistics, Springer, New York (2007),\99999DOI99999 10.1007/978-0-387-68477-2 \hyphenation{McGraw}. MR 2344835 | Zbl 1304.62019
[28] Mood, A. M., Graybill, F. A., Boes, D. C.: Introduction to the Theory of Statistics. McGraw-Hill Series in Probability and Statistics, McGraw-Hill Book Company, New York (1974). MR 0033470 | Zbl 0277.62002
[29] Nadar, M., Kızılaslan, F.: Classical and Bayesian estimation of $P(X. Stat. Pap. 55 (2014), 751-783. DOI 10.1007/s00362-013-0526-x | MR 3227550 | Zbl 1336.62077
[30] Nadarajah, S.: Reliability for some bivariate beta distributions. Math. Probl. Eng. 2005 (2005), 101-111. DOI 10.1155/mpe.2005.101 | MR 2144110 | Zbl 1069.62081
[31] Nadarajah, S.: Expansions for bivariate copulas. Stat. Probab. Lett. 100 (2015), 77-84. DOI 10.1016/j.spl.2015.02.005 | MR 3324077 | Zbl 1314.62137
[32] Nelsen, R. B.: An Introduction to Copulas. Springer Series in Statistics, Springer, New York (2006). DOI 10.1007/0-387-28678-0 | MR 2197664 | Zbl 1152.62030
[33] Nevzorov, V. B., Ahsanullah, M.: Some distributions of induced records. Biom. J. 42 (2000), 1069-1081. DOI /10.1002/1521-4036(200012)42:8<1069::AID-BIMJ1069>3.0.CO;2-W | MR 1818512 | Zbl 0960.62052
[34] Pakdaman, Z., Ahmadi, J.: Stress-strength reliability for $P(X_{r:n_1}. İstatistik 6 (2013), 92-102. MR 3241750
[35] Raqab, M. Z., Madi, M. T.: Inference for the generalized Rayleigh distribution based on progressively censored data. J. Stat. Plann. Inference 141 (2011), 3313-3322. DOI 10.1016/j.jspi.2011.04.016 | MR 2805647 | Zbl 1216.62151
[36] Rezaei, S., Tahmasbi, R., Mahmoodi, M.: Estimation of $P[Y>X]$ for generalized Pareto distribution. J. Stat. Plann. Inference 140 (2010), 480-494. DOI 10.1016/j.jspi.2009.07.024 | MR 2558379 | Zbl 1177.62024
[37] Saraçoğlu, B., Kinaci, I., Kundu, D.: On estimation of $R=P(Y>X)$ for exponential distribution under progressive type-II censoring. J. Stat. Comput. Simulation 82 (2012), 729-744. DOI 10.1080/00949655.2010.551772 | MR 2916087 | Zbl 06147497
[38] Sengupta, S.: Unbiased estimation of $P(Y>X)$ for two-parameter exponential populations using order statistics. Statistics 45 (2011), 179-188. DOI 10.1080/02331880903546431 | MR 2783405 | Zbl 1283.62017
[39] Tahmasebi, S., Jafari, A. A., Afshari, M.: Concomitants of dual generalized order statistics from Morgenstern type bivariate generalized exponential distribution. J. Stat. Theory Appl. 14 (2015), 1-12. DOI 10.2991/jsta.2015.14.1.1 | MR 3341061
[40] Tarvirdizade, B., Ahmadpour, M.: Estimation of the stress-strength reliability for the two-parameter bathtub-shaped lifetime distribution based on upper record values. Stat. Methodol. 31 (2016), 58-72. DOI 10.1016/j.stamet.2016.01.005 | MR 3477728 | Zbl 07037202
[41] Valiollahi, R., Asgharzadeh, A., Raqab, M. Z.: Estimation of $P(Y. Commun. Stat., Theory Methods 42 (2013), 4476-4498. DOI 10.1080/03610926.2011.650265 | MR 3171012 | Zbl 1282.65017
[42] Wong, A.: Interval estimation of $P(Y>X)$ for generalized Pareto distribution. J. Stat. Plann. Inference 142 (2012), 601-607. DOI 10.1016/j.jspi.2011.04.024 | MR 2843061 | Zbl 1231.62039
[43] Yang, S. S.: General distribution theory of the concomitants of order statistics. Ann. Stat. (1977), 996-1002. DOI 10.1214/aos/1176343954 | MR 0501519 | Zbl 0367.62017
[44] Yörübulut, S., Gebizlioglu, O. L.: Bivariate pseudo-Gompertz distribution and concomitants of its order statistics. J. Comput. Appl. Math. 247 (2013), 68-83. DOI 10.1016/j.cam.2013.01.006 | MR 3023302 | Zbl 06155442
Partner of
EuDML logo