Previous |  Up |  Next

Article

Keywords:
tilting module; semidualizing module; $C$-projective
Summary:
Let $R$ be a commutative Noetherian ring, and let $C$ be a semidualizing \hbox {$R$-module}. The notion of $C$-tilting $R$-modules is introduced as the relative setting of the notion of tilting $R$-modules with respect to $C$. Some properties of tilting and $C$-tilting modules and the relations between them are mentioned. It is shown that every finitely generated $C$-tilting $R$-module is $C$-projective. Finally, we investigate some kernel subcategories related to $C$-tilting modules.
References:
[1] Avramov, L. L., Foxby, H.-B.: Ring homomorphisms and finite Gorenstein dimension. Proc. Lond. Math. Soc. III. 75 (1997), 241-270. DOI 10.1112/S0024611597000348 | MR 1455856 | Zbl 0901.13011
[2] Bazzoni, S., Mantese, F., Tonolo, A.: Derived equivalence induced by infinitely generated {$n$}-tilting modules. Proc. Am. Math. Soc. 139 (2011), 4225-4234. DOI 10.1090/S0002-9939-2011-10900-6 | MR 2823068 | Zbl 1232.16004
[3] Bongratz, K.: Tilted algebras. Representations of Algebras. Proc. 3rd Int. Conf., Puebla, 1980 Lect. Notes Math. 903, Springer, Berlin (1981), 26-38. DOI 10.1007/bfb0092982 | MR 0654701 | Zbl 0478.16025
[4] Christensen, L. W.: Semi-dualizing complexes and their Auslander categories. Trans. Am. Math. Soc. 353 (2001), 1839-1883. DOI 10.1090/S0002-9947-01-02627-7 | MR 1813596 | Zbl 0969.13006
[5] Enochs, E. E., Jenda, O. M. G.: Relative Homological Algebra. Gruyter Expositions in Mathematics 30, Walter de Gruyter, Berlin (2011). DOI 10.1515/9783110215212 | MR 2857612 | Zbl 1238.13001
[6] Foxby, H.-B.: Gorenstein modules and related modules. Math. Scand. 31 (1973), 267-284. DOI 10.7146/math.scand.a-11434 | MR 0327752 | Zbl 0272.13009
[7] Golod, E. S.: $G$-dimension and generalized perfect ideals. Tr. Mat. Inst. Steklova 165 Russian (1984), 62-66. MR 0752933 | Zbl 0577.13008
[8] Happel, D., Ringel, C. M.: Tilted algebras. Trans. Am. Math. Soc. 274 (1982), 399-443. DOI 10.2307/1999116 | MR 0675063 | Zbl 0503.16024
[9] Holm, H., Jø{r}gensen, P.: Semi-dualizing modules and related Gorenstein homological dimensions. J. Pure Appl. Algebra 205 (2006), 423-445. DOI 10.1016/j.jpaa.2005.07.010 | MR 2203625 | Zbl 1094.13021
[10] Holm, H., White, D.: Foxby equivalence over associative rings. J. Math. Kyoto Univ. 47 (2007), 781-808. DOI 10.1215/kjm/1250692289 | MR 2413065 | Zbl 1154.16007
[11] Miyashita, Y.: Tilting modules of finite projective dimension. Math. Z. 193 (1986), 113-146. DOI 10.1007/BF01163359 | MR 0852914 | Zbl 0578.16015
[12] Salimi, M.: On relative Gorenstein homological dimensions with respect to a dualizing module. Mat. Vesnik 69 (2017), 118-125. MR 3621408
[13] Salimi, M., Sather-Wagstaff, S., Tavasoli, E., Yassemi, S.: Relative Tor functors with respect to a semidualizing module. Algebr. Represent. Theory 17 (2014), 103-120. DOI 10.1007/s10468-012-9389-4 | MR 3160715 | Zbl 1295.13023
[14] Salimi, M., Tavasoli, E., Yassemi, S.: Top local cohomology modules and Gorenstein injectivity with respect to a semidualizing module. Arch. Math. 98 (2012), 299-305. DOI 10.1007/s00013-012-0371-5 | MR 2914346 | Zbl 1246.13021
[15] Sather-Wagstaff, S.: Semidualizing Modules. Available at https://ssather.people.clemson.edu/DOCS/sdm.pdf Zbl 1282.13021
[16] Sather-Wagstaff, S., Sharif, T., White, D.: Comparison of relative cohomology theories with respect to semidualizing modules. Math. Z. 264 (2010), 571-600. DOI 10.1007/s00209-009-0480-4 | MR 2591820 | Zbl 1190.13007
[17] Takahashi, R., White, D.: Homological aspects of semidualizing modules. Math. Scand. 106 (2010), 5-22. DOI 10.7146/math.scand.a-15121 | MR 2603458 | Zbl 1193.13012
[18] Tang, X.: New characterizations of dualizing modules. Commun. Algebra 40 (2012), 845-861. DOI 10.1080/00927872.2010.540285 | MR 2899912 | Zbl 1246.13022
[19] Vasconcelos, W. V.: Divisor Theory in Module Categories. North-Holland Mathematics Studies 14, Elsevier, Amsterdam (1974). DOI 10.1016/s0304-0208(08)x7021-5 | MR 0498530 | Zbl 0296.13005
[20] White, D.: Gorenstein projective dimension with respect to a semidualizing module. J. Commut. Algebra 2 (2010), 111-137. DOI 10.1216/JCA-2010-2-1-111 | MR 2607104 | Zbl 1237.13029
Partner of
EuDML logo