Previous |  Up |  Next

Article

Keywords:
generalized matrix algebra; commuting trace; centralizing trace; Lie isomorphism; Lie triple isomorphism
Summary:
Let $\mathcal {R}$ be a commutative ring, $\mathcal {G}$ be a generalized matrix algebra over $\mathcal {R}$ with weakly loyal bimodule and $\mathcal {Z}(\mathcal {G})$ be the center of $\mathcal {G}$. Suppose that $\mathfrak {q}\colon \mathcal {G}\times \mathcal {G} \rightarrow \mathcal {G}$ is an \hbox {$\mathcal {R}$-bilinear} mapping and that $\mathfrak {T}_{\mathfrak {q}}\colon \mathcal {G}\rightarrow \mathcal {G}$ is a trace of $\mathfrak {q}$. The aim of this article is to describe the form of $\mathfrak {T}_{\mathfrak {q}}$ satisfying the centralizing condition $[\mathfrak {T}_{\mathfrak {q}}(x), x]\in \mathcal {Z(G)}$ (and commuting condition $[\mathfrak {T}_{\mathfrak {q}}(x), x]=0$) for all $x\in \mathcal {G}$. More precisely, we will revisit the question of when the centralizing trace (and commuting trace) $\mathfrak {T}_{\mathfrak {q}}$ has the so-called proper form from a new perspective. Using the aforementioned trace function, we establish sufficient conditions for each Lie-type isomorphism of $\mathcal {G}$ to be almost standard. As applications, centralizing (commuting) traces of bilinear mappings and Lie-type isomorphisms on full matrix algebras and those on upper triangular matrix algebras are totally determined.
References:
[1] Ánh, P. N., Wyk, L. van: Automorphism groups of generalized triangular matrix rings. Linear Algebra Appl. 434 (2011), 1018-1026. DOI 10.1016/j.laa.2010.10.007 | MR 2763609 | Zbl 1222.16017
[2] Bai, Z., Du, S., Hou, J.: Multiplicative Lie isomorphisms between prime rings. Commun. Algebra 36 (2008), 1626-1633. DOI 10.1080/00927870701870475 | MR 2420085 | Zbl 1145.16013
[3] Benkovič, D.: Lie triple derivations of unital algebras with idempotents. Linear Multilinear Algebra 63 (2015), 141-165. DOI 10.1080/03081087.2013.851200 | MR 3273744 | Zbl 1315.16037
[4] Benkovič, D., Eremita, D.: Commuting traces and commutativity preserving maps on triangular algebras. J. Algebra 280 (2004), 797-824. DOI 10.1016/j.jalgebra.2004.06.019 | MR 2090065 | Zbl 1076.16032
[5] Benkovič, D., Eremita, D.: Multiplicative Lie {$n$}-derivations of triangular rings. Linear Algebra Appl. 436 (2012), 4223-4240. DOI 10.1016/j.laa.2012.01.022 | MR 2915278 | Zbl 1247.16040
[6] Benkovič, D., Širovnik, N.: Jordan derivations of unital algebras with idempotents. Linear Algebra Appl. 437 (2012), 2271-2284. DOI 10.1016/j.laa.2012.06.009 | MR 2954489 | Zbl 1258.16042
[7] Boboc, C., Dăscălescu, S., Wyk, L. van: Isomorphisms between Morita context rings. Linear Multilinear Algebra 60 (2012), 545-563. DOI 10.1080/03081087.2011.611946 | MR 2916840 | Zbl 1258.16040
[8] Brešar, M.: Centralizing mappings and derivations in prime rings. J. Algebra 156 (1993), 385-394. DOI 10.1006/jabr.1993.1080 | MR 1216475 | Zbl 0773.16017
[9] Brešar, M.: Commuting traces of biadditive mappings, commutativity-preserving mappings and Lie mappings. Trans. Am. Math. Soc. 335 (1993), 525-546. DOI 10.2307/2154392 | MR 1069746 | Zbl 0791.16028
[10] Brešar, M.: Commuting maps: a survey. Taiwanese J. Math. 8 (2004), 361-397. DOI 10.11650/twjm/1500407660 | MR 2163313 | Zbl 1078.16032
[11] Brešar, M., Chebotar, M. A., III, W. S. Martindale: Functional Identities. Frontiers in Mathematics, Birkhäuser, Basel (2007). DOI 10.1007/978-3-7643-7796-0 | MR 2332350 | Zbl 1132.16001
[12] Martín, A. J. Calderón: Graded triangular algebras. Electron. J. Linear Algebra 27 (2014), 317-331. DOI 10.13001/1081-3810.1621 | MR 3194959 | Zbl 1297.16043
[13] Martín, A. J. Calderón, Haralampidou, M.: Lie mappings on locally $m$-convex $H^*$-algebras. Proceedings of the International Conference on Topological Algebras and Their Applications, ICTAA 2008 Math. Stud. (Tartu) 4, Estonian Mathematical Society, Tartu (2008), 42-51. MR 2484660 | Zbl 1216.46045
[14] Martín, A. J. Calderón, González, C. Martín: Lie isomorphisms on {$H^*$}-algebras. Commun. Algebra 31 (2003), 323-333. DOI 10.1081/AGB-120016762 | MR 1969226 | Zbl 1021.16021
[15] Martín, A. J. Calderón, González, C. Martín: The Banach-Lie group of Lie triple automorphisms of an $H^*$-algebra. Acta Math. Sci., Ser. B, Engl. Ed. 30 (2010), 1219-1226. DOI 10.1016/S0252-9602(10)60118-X | MR 2730548 | Zbl 1240.17006
[16] Martín, A. J. Calderón, González, C. Martín: A linear approach to Lie triple automorphisms of $H^*$-algebras. J. Korean Math. Soc. 48 (2011), 117-132. DOI 10.4134/JKMS.2011.48.1.117 | MR 2778017 | Zbl 1235.17011
[17] Cheung, W.-S.: Mappings on Triangular Algebras. Doctoral dissertation, University of Victoria, Canada (2000). MR 2701472
[18] Cheung, W.-S.: Commuting maps of triangular algebras. J. Lond. Math. Soc., II. Ser. 63 (2001), 117-127. DOI 10.1112/S0024610700001642 | MR 1802761 | Zbl 1014.16035
[19] Ding, Y.-N., Li, J.-K.: Characterizations of Lie $n$-derivations of unital algebras with nontrivial idempotents. Available at https://arxiv.org/abs/1702.08877v1 MR 3897339
[20] Dolinar, G.: Maps on {$M_n$} preserving Lie products. Publ. Math. 71 (2007), 467-477. MR 2361725 | Zbl 1164.17015
[21] Dolinar, G.: Maps on upper triangular matrices preserving Lie products. Linear Multilinear Algebra 55 (2007), 191-198. DOI 10.1080/03081080600635484 | MR 2288901 | Zbl 1160.17014
[22] Du, Y., Wang, Y.: {$k$}-commuting maps on triangular algebras. Linear Algebra Appl. 436 (2012), 1367-1375. DOI 10.1016/j.laa.2011.08.024 | MR 2890924 | Zbl 1238.15014
[23] Du, Y., Wang, Y.: Lie derivations of generalized matrix algebras. Linear Algebra Appl. 436 (2012), 1367-1375. DOI 10.1016/j.laa.2012.06.013 | MR 2964719 | Zbl 1266.16046
[24] Du, Y., Wang, Y.: Biderivations of generalized matrix algebras. Linear Algebra Appl. 438 (2013), 4483-4499. DOI 10.1016/j.laa.2013.02.017 | MR 3034545 | Zbl 1283.16035
[25] Franca, W.: Commuting maps on some subsets of matrices that are not closed under addition. Linear Algebra Appl. 437 (2012), 388-391. DOI 10.1016/j.laa.2012.02.018 | MR 2917454 | Zbl 1247.15026
[26] Franca, W.: Commuting maps on rank-{$k$} matrices. Linear Algebra Appl. 438 (2013), 2813-2815. DOI 10.1016/j.laa.2012.11.013 | MR 3008537 | Zbl 1261.15017
[27] Franca, W.: Commuting traces of multiadditive maps on invertible and singular matrices. Linear Multilinear Algebra 61 (2013), 1528-1535. DOI 10.1080/03081087.2012.758259 | MR 3175383 | Zbl 1292.15026
[28] Franca, W.: Commuting traces on invertible and singular operators. Oper. Matrices 9 (2015), 305-310. DOI 10.7153/oam-09-17 | MR 3338565 | Zbl 1314.47005
[29] Franca, W.: Commuting traces of biadditive maps on invertible elements. Commun. Algebra 44 (2016), 2621-2634. DOI 10.1080/00927872.2015.1053906 | MR 3492178 | Zbl 1352.16025
[30] Franca, W.: Weakly commuting maps on the set of rank-1 matrices. Linear Multilinear Algebra 65 (2017), 475-495. DOI 10.1080/03081087.2016.1192576 | MR 3589613 | Zbl 1356.16023
[31] Franca, W., Louza, N.: Commuting maps on rank-1 matrices over noncommutative division rings. Commun. Algebra 45 (2017), 4696-4706. DOI 10.1080/00927872.2016.1278010 | MR 3670342 | Zbl 1388.16023
[32] Herstein, I. N.: Lie and Jordan structures in simple, associative rings. Bull. Am. Math. Soc. 67 (1961), 517-531. DOI 10.1090/S0002-9904-1961-10666-6 | MR 0139641 | Zbl 0107.02704
[33] Hua, L.-K.: A theorem on matrices over a sfield and its applications. J. Chinese Math. Soc. (N.S.) 1 (1951), 110-163. MR 0071414
[34] Krylov, P. A.: Isomorphism of generalized matrix rings. Algebra Logika 47 (2008), 456-463 Russian translation in Algebra Logic 47 2008 258-262. DOI 10.1007/s10469-008-9016-y | MR 2484564 | Zbl 1155.16302
[35] Krylov, P. A.: Injective modules over formal matrix rings. Sibirsk. Mat. Zh. 51 (2010), 90-97 Russian translation in Sib. Math. J. 51 2010 72-77. DOI 10.1007/s11202-010-0009-4 | MR 2654524 | Zbl 1214.16004
[36] Krylov, P. A.: The group {$K_0$} of a generalized matrix ring. Algebra Logika 52 (2013), 370-385 Russian translation in Algebra Logic 52 2013 250-261. DOI 10.1007/s10469-013-9238-5 | MR 3137130 | Zbl 1288.19001
[37] Krylov, P. A., Tuganbaev, A. A.: Modules over formal matrix rings. Fundam. Prikl. Mat. 15 (2009), 145-211 Russian translation in J. Math. Sci., New York 171, 2010 248-295. DOI 10.1007/s10958-010-0133-5 | MR 2745016 | Zbl 1283.16025
[38] Krylov, P., Tuganbaev, A.: Formal Matrices. Algebra and Applications 23 Springer, Cham (2017). DOI 10.1007/978-3-319-53907-2 | MR 3642603 | Zbl 1367.16001
[39] Lee, P.-H., Wong, T.-L., Lin, J.-S., Wang, R.-J.: Commuting traces of multiadditive mappings. J. Algebra 193 (1997), 709-723. DOI 10.1006/jabr.1996.7016 | MR 1458811 | Zbl 0879.16022
[40] Li, Y., Wyk, L. van, Wei, F.: Jordan derivations and antiderivations of generalized matrix algebras. Oper. Matrices 7 (2013), 399-415. DOI 10.7153/oam-07-23 | MR 3099192 | Zbl 1310.15044
[41] Li, Y., Wei, F.: Semi-centralizing maps of generalized matrix algebras. Linear Algebra Appl. 436 (2012), 1122-1153. DOI 10.1016/j.laa.2011.07.014 | MR 2890909 | Zbl 1238.15015
[42] Li, Y., Wei, F., Fošner, A.: $k$-Commuting mappings of generalized matrix algebras. (to appear) in Period. Math. Hungar. DOI 10.1007/s10998-018-0260-1
[43] Liang, X., Wei, F., Xiao, Z., Fošner, A.: Centralizing traces and Lie triple isomorphisms on generalized matrix algebras. Linear Multilinear Algebra 63 (2015), 1786-1816. DOI 10.1080/03081087.2014.974490 | MR 3305010 | Zbl 1326.15037
[44] Liu, C.-K.: Centralizing maps on invertible or singular matrices over division rings. Linear Algebra Appl. 440 (2014), 318-324. DOI 10.1016/j.laa.2013.10.016 | MR 3134274 | Zbl 1294.16030
[45] Liu, C.-K., Yang, J.-J.: Power commuting additive maps on invertible or singular matrices. Linear Algebra Appl. 530 (2017), 127-149. DOI 10.1016/j.laa.2017.04.038 | MR 3672952 | Zbl 1368.15015
[46] Lu, F.: Lie isomorphisms of reflexive algebras. J. Funct. Anal. 240 (2006), 84-104. DOI 10.1016/j.jfa.2006.07.012 | MR 2259893 | Zbl 1116.47059
[47] Marcoux, L. W., Sourour, A. R.: Commutativity preserving linear maps and Lie automorphisms of triangular matrix algebras. Linear Algebra Appl. 288 (1999), 89-104. DOI 10.1016/S0024-3795(98)10182-9 | MR 1670535 | Zbl 0933.15029
[48] Marcoux, L. W., Sourour, A. R.: Lie isomorphisms of nest algebras. J. Funct. Anal. 164 (1999), 163-180. DOI 10.1006/jfan.1999.3388 | MR 1694510 | Zbl 0940.47061
[49] González, C. Martín, Repka, J., Sánchez-Ortega, J.: Automorphisms, {$\sigma$}-biderivations and {$\sigma$}-commuting maps of triangular algebras. Mediterr. J. Math. 14 (2017), Article No. 68, 25 pages. DOI 10.1007/s00009-016-0809-2 | MR 3619430 | Zbl 1397.16039
[50] Morita, K.: Duality for modules and its applications to the theory of rings with minimum condition. Sci. Rep. Tokyo Kyoiku Daigaku, Sect. A 6 (1958), 83-142. MR 0096700 | Zbl 0080.25702
[51] Qi, X., Hou, J.: Characterization of {$\xi$}-Lie multiplicative isomorphisms. Oper. Matrices 4 (2010), 417-429. DOI 10.7153/oam-04-22 | MR 2680956 | Zbl 1203.16027
[52] Qi, X., Hou, J.: Characterization of {$k$}-commuting additive maps on rings. Linear Algebra Appl. 468 (2015), 48-62. DOI 10.1016/j.laa.2013.12.038 | MR 3293240 | Zbl 1312.16040
[53] Qi, X., Hou, J., Deng, J.: Lie ring isomorphisms between nest algebras on Banach spaces. J. Funct. Anal. 266 (2014), 4266-4292. DOI 10.1016/j.jfa.2014.01.018 | MR 3170209 | Zbl 1312.47094
[54] Sánchez-Ortega, J.: $\sigma$-mappings of triangular algebras. Available at https://arxiv.org/abs/1312.4635v1
[55] Sourour, A. R.: Maps on triangular matrix algebras. Problems in Applied Mathematics and Computational Intelligence Math. Comput. Sci. Eng., World Sci. Eng. Soc. Press, Athens (2001), 92-96. MR 2022547
[56] Šemrl, P.: Non-linear commutativity preserving maps. Acta Sci. Math. 71 (2005), 781-819. MR 2206609 | Zbl 1111.15002
[57] Wang, T., Lu, F.: Lie isomorphisms of nest algebras on Banach spaces. J. Math. Anal. Appl. 391 (2012), 582-594. DOI 10.1016/j.jmaa.2012.01.044 | MR 2903155 | Zbl 1251.46025
[58] Wang, Y.: Commuting (centralizing) traces and Lie (triple) isomorphisms on triangular algebras revisited. Linear Algebra Appl. 488 (2016), 45-70. DOI 10.1016/j.laa.2015.09.039 | MR 3419772 | Zbl 1335.16029
[59] Wang, Y.: Notes on centralizing traces and Lie triple isomorphisms on triangular algebras. Linear Multilinear Algebra 64 (2016), 863-869. DOI 10.1080/03081087.2015.1063578 | MR 3479386 | Zbl 1354.16024
[60] Wang, Y., Wang, Y.: Multiplicative Lie {$n$}-derivations of generalized matrix algebras. Linear Algebra Appl. 438 (2013), 2599-2616. DOI 10.1016/j.laa.2012.10.052 | MR 3005317 | Zbl 1272.16039
[61] Xiao, Z., Wei, F.: Commuting mappings of generalized matrix algebras. Linear Algebra Appl. 433 (2010), 2178-2197. DOI 10.1016/j.laa.2010.08.002 | MR 2736145 | Zbl 1206.15016
[62] Xiao, Z., Wei, F.: Commuting traces and Lie isomorphisms on generalized matrix algebras. Oper. Matrices 8 (2014), 821-847. DOI 10.7153/oam-08-46 | MR 3257894 | Zbl 1306.15024
[63] Xiao, Z., Wei, F., Fošner, A.: Centralizing traces and Lie triple isomorphisms on triangular algebras. Linear Multilinear Algebra 63 (2015), 1309-1331. DOI 10.1080/03081087.2014.932356 | MR 3299322 | Zbl 1318.15012
[64] Xu, X., Yi, X.: Commuting maps on rank-{$k$} matrices. Electron. J. Linear Algebra 27 (2014), 735-741. DOI 10.13001/1081-3810.1958 | MR 3291661 | Zbl 1325.15014
[65] Yu, X., Lu, F.: Maps preserving Lie product on {$B(X)$}. Taiwanese J. Math. 12 (2008), 793-806. DOI 10.11650/twjm/1500602436 | MR 2417148 | Zbl 1159.47020
[66] Zhang, J.-H., Zhang, F.-J.: Nonlinear maps preserving Lie products on factor von Neumann algebras. Linear Algebra Appl. 429 (2008), 18-30. DOI 10.1016/j.laa.2008.01.031 | MR 2419135 | Zbl 1178.47024
Partner of
EuDML logo