Previous |  Up |  Next

Article

Keywords:
quasilinear heat equation; total blow-up; blow-up only at space infinity
Summary:
We consider solutions of quasilinear equations $u_{t}=\Delta u^{m} + u^{p}$ in $\mathbb R^{N}$ with the initial data $u_{0}$ satisfying $0 < u_{0}< M$ and $\lim _{|x|\to \infty }u_{0}(x)=M$ for some constant $M>0$. It is known that if $0<m<p$ with $p>1$, the blow-up set is empty. We find solutions $u$ that blow up throughout $\mathbb R^{N}$ when $m>p>1$.
References:
[1] Galaktionov, V. A.: Asymptotic behavior of unbounded solutions of the nonlinear equation $u_t=(u^\sigma u_x)_x+u^\beta$ near a ``singular'' point. Sov. Math., Dokl. 33 (1986), 840-844 translated from Dokl. Akad. Nauk SSSR 288 1986 1293-1297. MR 0852454 | Zbl 0629.35061
[2] Galaktionov, V. A., Kurdyumov, S. P., Mikhailov, A. P., Samarskii, A. A.: Unbounded solutions of the Cauchy problem for the parabolic equation $u_t=\nabla (u^{\sigma }\nabla u)+u^{\beta}$. Sov. Phys., Dokl. 25 (1980), 458-459 translated from Dokl. Akad. Nauk SSSR 252 1980 1362-1364. MR 0581597 | Zbl 515.35045
[3] Giga, Y., Umeda, N.: Blow-up directions at space infinity for solutions of semilinear heat equations. Bol. Soc. Parana. Mat. (3) 23 (2005), 9-28 correction ibid. 24 2006 19-24. DOI 10.5269/bspm.v23i1-2.7450 | MR 2242285 | Zbl 1173.35531
[4] Giga, Y., Umeda, N.: On blow-up at space infinity for semilinear heat equations. J. Math. Anal. Appl. 316 (2006), 538-555. DOI 10.1016/j.jmaa.2005.05.007 | MR 2206688 | Zbl 1106.35029
[5] Lacey, A. A.: The form of blow-up for nonlinear parabolic equations. Proc. R. Soc. Edinb., Sect. A 98 (1984), 183-202. DOI 10.1017/S0308210500025609 | MR 0765494 | Zbl 0556.35077
[6] Ladyženskaja, O. A., Solonnikov, V. A., Ural'ceva, N. N.: Linear and Quasilinear Equations of Parabolic Type. Translations of Mathematical Monographs 23. AMS, Providence (1968). DOI 10.1090/mmono/023 | MR 0241822 | Zbl 0174.15403
[7] Mochizuki, K., Suzuki, R.: Blow-up sets and asymptotic behavior of interfaces for quasilinear degenerate parabolic equations in $R^N$. J. Math. Soc. Japan 44 (1992), 485-504. DOI 10.2969/jmsj/04430485 | MR 1167379 | Zbl 0805.35065
[8] Oleinik, O. A., Kalašinkov, A. S., Chou, Y.-L.: The Cauchy problem and boundary problems for equations of the type of non-stationary filtration. Izv. Akad. Nauk SSSR, Ser. Mat. 22 (1958), 667-704 Russian. MR 0099834 | Zbl 0093.10302
[9] Samarskii, A. A., Galaktionov, V. A., Kurdyumov, S. P., Mikhailov, A. P.: Blow-up in Quasilinear Parabolic Equations. De Gruyter Expositions in Mathematics 19. Walter de Gruyter, Berlin (1995). DOI 10.1515/9783110889864.535 | MR 1330922 | Zbl 1020.35001
[10] Seki, Y.: On directional blow-up for quasilinear parabolic equations with fast diffusion. J. Math. Anal. Appl. 338 (2008), 572-587. DOI 10.1016/j.jmaa.2007.05.033 | MR 2386440 | Zbl 1144.35030
[11] Seki, Y., Umeda, N., Suzuki, R.: Blow-up directions for quasilinear parabolic equations. Proc. R. Soc. Edinb., Sect. A, Math. 138 (2008), 379-405. DOI 10.1017/S0308210506000801 | MR 2406697 | Zbl 1167.35393
[12] Shimojō, M.: The global profile of blow-up at space infinity in semilinear heat equations. J. Math. Kyoto Univ. 48 (2008), 339-361. DOI 10.1215/kjm/1250271415 | MR 2436740 | Zbl 1184.35078
[13] Suzuki, R.: On blow-up sets and asymptotic behavior of interfaces of one-dimensional quasilinear degenerate parabolic equations. Publ. Res. Inst. Math. Sci. 27 (1991), 375-398. DOI 10.2977/prims/1195169661 | MR 1121244 | Zbl 0789.35024
Partner of
EuDML logo