Previous |  Up |  Next

Article

Keywords:
$\varepsilon $-fixed point; $\alpha $-admissible mapping; partial generalized convex contraction of order $4$ and rank $4$; $\alpha $-complete metric space
Summary:
We introduce partial generalized convex contractions of order $4$ and rank $4$ using some auxiliary functions. We present some results on approximate fixed points and fixed points for such class of mappings having no continuity condition in $\alpha $-complete metric spaces and $\mu $-complete metric spaces. Also, as an application, some fixed point results in a metric space endowed with a binary relation and some approximate fixed point results in a metric space endowed with a graph have been obtained. Some examples are also provided to illustrate the main results and to show the usability of the given hypotheses.
References:
[1] Ansari, A. H., Shukla, S.: Some fixed point theorems for ordered $F$-$({\cal F},h)$-contraction and subcontraction in 0-$f$-orbitally complete partial metric spaces. J. Adv. Math. Stud. 9 (2016), 37-53. MR 3495331 | Zbl 1353.54030
[2] Berinde, M.: Approximate fixed point theorems. Stud. Univ. Babeş-Bolyai, Math. 51 (2006), 11-25. MR 2246435 | Zbl 1164.54028
[3] Browder, F. E., Petryshyn, W. V.: The solution by iteration of nonlinear functional equations in Banach spaces. Bull. Am. Math. Soc. 72 (1966), 571-575. DOI 10.1090/S0002-9904-1966-11544-6 | MR 0190745 | Zbl 0138.08202
[4] Chandok, S., Ansari, A. H.: Some results on generalized nonlinear contractive mappings. Comm. Opt. Theory 2017 (2017), Article ID 27, 12 pages. DOI 10.23952/cot.2017.27
[5] Dey, D., Laha, A. K., Saha, M.: Approximate coincidence point of two nonlinear mappings. J. Math. 2013 (2013), Article No. 962058, 4 pages. DOI 10.1155/2013/962058 | MR 3100732 | Zbl 1268.54022
[6] Dey, D., Saha, M.: Approximate fixed point of Reich operator. Acta Math. Univ. Comen., New Ser. 82 (2013), 119-123. MR 3028154 | Zbl 1324.54067
[7] Hussain, N., Kutbi, M. A., Salimi, P.: Fixed point theory in $\alpha$-complete metric spaces with applications. Abstr. Appl. Anal. 2014 (2014), Article ID 280817, 11 pages. DOI 10.1155/2014/280817 | MR 3166589
[8] Istrăţescu, V. I.: Some fixed point theorems for convex contraction mappings and mappings with convex diminishing diameters. I. Ann. Mat. Pura Appl., IV. Ser. 130 (1982), 89-104. DOI 10.1007/BF01761490 | MR 0663966 | Zbl 0477.54033
[9] Jaradat, M. M. M., Mustafa, Z., Ansari, A. H., Chandok, S., Dolićanin, Ć.: Some approximate fixed point results and application on graph theory for partial $(h,F)$-generalized convex contraction mappings with special class of functions on complete metric space. J. Nonlinear Sci. Appl. 10 (2017), 1695-1708. DOI 10.22436/jnsa.010.04.32 | MR 3639736
[10] Kohlenbach, U., Leuştean, L.: The approximate fixed point property in product spaces. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 66 (2007), 806-818. DOI 10.1016/j.na.2005.12.020 | MR 2288433 | Zbl 1118.47047
[11] Latif, A., Sintunavarat, W., Ninsri, A.: Approximate fixed point theorems for partial generalized convex contraction mappings in $\alpha$-complete metric spaces. Taiwanese J. Math. 19 (2015), 315-333. DOI 10.11650/tjm.19.2015.4746 | MR 3313418 | Zbl 1357.54034
[12] Miandaragh, M. A., Postolache, M., Rezapour, S.: Approximate fixed points of generalized convex contractions. Fixed Point Theory Appl. 2013 (2013), Article No. 255, 8 pages. DOI 10.1186/1687-1812-2013-255 | MR 3213091 | Zbl 1321.54089
[13] Reich, S.: Approximate selections, best approximations, fixed points, and invariant sets. J. Math. Anal. Appl. 62 (1978), 104-113. DOI 10.1016/0022-247X(78)90222-6 | MR 0514991 | Zbl 0375.47031
[14] Samet, B., Vetro, C., Vetro, P.: Fixed point theorems for $\alpha$-$\psi$-contractive type mappings. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 75 (2012), 2154-2165. DOI 10.1016/j.na.2011.10.014 | MR 2870907 | Zbl 1242.54027
[15] Tijs, S., Torre, A., Brânzei, R.: Approximate fixed point theorems. Libertas Math. 23 (2003), 35-39 \99999MR99999 2002283 \vfill. MR 2002283 | Zbl 1056.47046
Partner of
EuDML logo