Previous |  Up |  Next

Article

Keywords:
class field tower; class group; real quadratic number field; metacyclic group
Summary:
We begin by giving a criterion for a number field $K$ with 2-class group of rank 2 to have a metacyclic Hilbert 2-class field tower, and then we will determine all real quadratic number fields $\mathbb Q(\sqrt d)$ that have a metacyclic nonabelian Hilbert $2$-class field tower.
References:
[1] Azizi, A., Mouhib, A.: On the rank of the 2-class group of $\mathbb Q({\sqrt m},{\sqrt d})$ where $m=2$ or a prime $p\equiv 1\pmod 4$. Trans. Am. Math. Soc. 353 (2001), French 2741-2752. DOI 10.1090/S0002-9947-01-02753-2 | MR 1828471 | Zbl 0986.11073
[2] Azizi, A., Mouhib, A.: Capitulation of the 2-ideal classes of biquadratic fields whose class field differs from the Hilbert class field. Pac. J. Math. 218 French (2005), 17-36. DOI 10.2140/pjm.2005.218.17 | MR 2224587 | Zbl 1152.11345
[3] Benjamin, E., Lemmermeyer, F., Snyder, C.: Real quadratic fields with abelian 2-class field tower. J. Number Theory 73 (1998), 182-194. DOI 10.1006/jnth.1998.2291 | MR 1658015 | Zbl 0919.11073
[4] Berkovich, Y., Janko, Z.: On subgroups of finite $p$-group. Isr. J. Math. 171 (2009), 29-49. DOI 10.1007/s11856-009-0038-5 | MR 2520099 | Zbl 1181.20017
[5] Martinet, J.: Tours de corps de classes et estimations de discriminants. Invent. Math. 44 French (1978), 65-73. DOI 10.1007/BF01389902 | MR 0460281 | Zbl 0369.12007
[6] Mouhib, A.: On the parity of the class number of multiquadratic number fields. J. Number Theory 129 (2009), 1205-1211. DOI 10.1016/j.jnt.2008.12.013 | MR 2521470 | Zbl 1167.11039
[7] Mouhib, A.: On 2-class field towers of some real quadratic number fields with 2-class groups of rank 3. Ill. J. Math. 57 (2013), 1009-1018. DOI 10.1215/ijm/1417442559 | MR 3285864 | Zbl 1302.11090
[8] Mouhib, A.: A positive proportion of some quadratic number fields with infinite Hilbert 2-class field tower. Ramanujan J. 40 (2016), 405-412. DOI 10.1007/s11139-015-9713-9 | MR 3490564 | Zbl 06580117
[9] Taussky, O.: A remark on the class field tower. J. London Math. Soc. 12 (1937), 82-85. DOI 10.1112/jlms/s1-12.1.82 | MR 1574658 | Zbl 0016.20002
Partner of
EuDML logo