Previous |  Up |  Next

Article

Keywords:
semi-stratifiable space; separable space; dense subset; feebly compact space; $\omega $-monolithic space; property $DC(\omega _1)$; star countable extent space; cardinal equality; countable chain condition; perfect space; $G^*_\delta $-diagonal
Summary:
We study relationships between separability with other properties in semi-stratifiable spaces. Especially, we prove the following statements: \endgraf (1) If $X$ is a semi-stratifiable space, then $X$ is separable if and only if $X$ is $DC(\omega _1)$; \endgraf (2) If $X$ is a star countable extent semi-stratifiable space and has a dense metrizable subspace, then $X$ is separable; \endgraf (3) Let $X$ be a $\omega $-monolithic star countable extent semi-stratifiable space. If $t(X)=\omega $ and $d(X) \le \omega _1$, then $X$ is hereditarily separable. \endgraf Finally, we prove that for any $T_1$-space $X$, $|X| \le L(X)^{\Delta (X)}$, which gives a partial answer to a question of Basile, Bella, and Ridderbos (2011). As a corollary, we show that $|X| \le e(X)^{\omega }$ for any semi-stratifiable space $X$.
References:
[1] Alas, O. T., Junqueira, L. R., Mill, J. van, Tkachuk, V. V., Wilson, R. G.: On the extent of star countable spaces. Cent. Eur. J. Math. 9 (2011), 603-615. DOI 10.2478/s11533-011-0018-y | MR 2784032 | Zbl 1246.54017
[2] Alas, O. T., Junqueira, L. R., Wilson, R. G.: Countability and star covering properties. Topology Appl. 158 (2011), 620-626. DOI 10.1016/j.topol.2010.12.012 | MR 2765618 | Zbl 1226.54023
[3] Arhangel'skii, A. A., Buzyakova, R. Z.: The rank of the diagonal and submetrizability. Commentat. Math. Univ. Carol. 47 (2006), 585-597. MR 2337413 | Zbl 1150.54335
[4] Basile, D., Bella, A., Ridderbos, G. J.: Weak extent, submetrizability and diagonal degrees. Houston J. Math. 40 (2014), 255-266. MR 3210565 | Zbl 1293.54003
[5] Creede, G. D.: Concerning semi-stratifiable spaces. Pac. J. Math. 32 (1970), 47-54. DOI 10.2140/pjm.1970.32.47 | MR 0254799 | Zbl 0189.23304
[6] Engelking, R.: General Topology. Sigma Series in Pure Mathematics 6. Heldermann, Berlin (1989). MR 1039321 | Zbl 0684.54001
[7] Gotchev, I. S.: Cardinalities of weakly Lindelöf spaces with regular $G_\kappa$-diagonals. Avaible at https://scirate.com/arxiv/1504.01785 MR 3958260
[8] Gruenhage, G.: Generalized metric spaces. Handbook of Set-Theoretic Topology North-Holland, Amsterdam (1984), 423-501 K. Kunen et al. DOI 10.1016/B978-0-444-86580-9.50013-6 | MR 0776629 | Zbl 0555.54015
[9] Hodel, R.: Cardinal functions. I. Handbook of Set-Theoretic Topology North-Holland, Amsterdam (1984), 1-61 K. Kunen et al. MR 0776620 | Zbl 0559.54003
[10] Ikenaga, S.: Topological concept between Lindelöf and Pseudo-Lindelöf. Research Reports of Nara National College of Technology 26 (1990), 103-108 Japanese.
[11] Juhász, I.: Cardinal Functions in Topology. Mathematical Centre Tracts 34. Mathematisch Centrum, Amsterdam (1971). MR 0340021 | Zbl 0224.54004
[12] Rojas-Sánchez, A. D., Tamariz-Mascarúa, Á.: Spaces with star countable extent. Commentat. Math. Univ. Carol. 57 (2016), 381-395. DOI 10.14712/1213-7243.2015.176 | MR 3554518 | Zbl 06674888
[13] Šapirovskij, B. E.: On separability and metrizability of spaces with Souslin's condition. Sov. Math. Dokl. 13 (1972), 1633-1638 translation from Dokl. Akad. Nauk SSSR 207 1972 800-803\kern0pt. MR 0322801 | Zbl 0268.54007
[14] Douwen, E. K. van, Reed, G. M., Roscoe, A. W., Tree, I. J.: Star covering properties. Topology Appl. 39 (1991), 71-103. DOI 10.1016/0166-8641(91)90077-Y | MR 1103993 | Zbl 0743.54007
[15] Wiscamb, M. R.: The discrete countable chain condition. Proc. Am. Math. Soc. 23 (1969), 608-612. DOI 10.2307/2036596 | MR 0248744 | Zbl 0184.26304
[16] Xuan, W. F.: Symmetric $g$-functions and cardinal inequalities. Topology Appl. 221 (2017), 51-58. DOI 10.1016/j.topol.2017.02.064 | MR 3624444 | Zbl 1376.54026
[17] Yu, Z.: A note on the extent of two subclasses of star countable spaces. Cent. Eur. J. Math. 10 (2012), 1067-1070. DOI 10.2478/s11533-012-0030-x | MR 2902235 | Zbl 1243.54042
[18] Zenor, P.: On spaces with regular $G_\delta $-diagonal. Pac. J. Math. 40 (1972), 759-763. DOI 10.2140/pjm.1972.40.759 | MR 0307195 | Zbl 0213.49504
Partner of
EuDML logo