Previous |  Up |  Next

Article

Keywords:
$\mathbb{Z}_2^n$-manifolds; mixed symmetry tensors; dual gravitons
Summary:
We show how the theory of $\mathbb{Z}_2^n$-manifolds - which are a non-trivial generalisation of supermanifolds - may be useful in a geometrical approach to mixed symmetry tensors such as the dual graviton. The geometric aspects of such tensor fields on both flat and curved space-times are discussed.
References:
[1] Bekaert, X., Boulanger, N.: Tensor gauge fields in arbitrary representations of $GL(D,\mathbb{R})$. Duality and Poincaré lemma. Comm. Math. Phys. 245 (1) (2004), 27–67. DOI 10.1007/s00220-003-0995-1 | MR 2036367
[2] Bekaert, X., Boulanger, N., Henneaux, M.: Consistent deformations of dual formulations of linearized gravity: a no-go result. Phys. Rev. D 67 (4) (2003), 044010. DOI 10.1103/PhysRevD.67.044010 | MR 1975985
[3] Bergshoeff, E.A., Hohm, O., Penas, V.A., Riccioni, F.: Dual double field theory. J. High Energy Phys. 26 (6) (2016), 39 pp. MR 3538187
[4] Campoleoni, A.: Metric-like Lagrangian formulations for higher-spin fields of mixed symmetry. Riv. Nuovo Cimento (3) 33 (2010), 123–253.
[5] Chatzistavrakidis, A., Gautason, F.F., Moutsopoulos, G., Zagermann, M.: Effective actions of nongeometric five-branes. Phys. Rev. D 89 (2014), 066004. DOI 10.1103/PhysRevD.89.066004
[6] Chatzistavrakidis, A., Khoo, F.S., Roest, D., Schupp, P.: Tensor Galileons and gravity. J. High Energy Phys. (3) (2017), 070. DOI 10.1007/JHEP03(2017)070 | MR 3657627
[7] Covolo, T., Grabowski, J., Poncin, N.: Splitting theorem for $\mathbb{Z}_2^n$-supermanifolds. J. Geom. Phys. 110 (2016), 393–401. DOI 10.1016/j.geomphys.2016.09.006 | MR 3566123
[8] Covolo, T., Grabowski, J., Poncin, N.: The category of $\mathbb{Z}_2^n$-supermanifolds. J. Math. Phys. 57 (7) (2016), 16 pp., 073503. DOI 10.1063/1.4955416 | MR 3522262
[9] Covolo, T., Kwok, S., Poncin, N.: Differential calculus on $\mathbb{Z}_2^n$-supermanifolds. arXiv:1608.00949 [math.DG].
[10] Curtright, T.: Generalized gauge fields. Phys. Lett. B 165 (1985), 304–308. DOI 10.1016/0370-2693(85)91235-3
[11] de Medeiros, P.F., Hull, C.M.: Exotic tensor gauge theory and duality. Comm. Math. Phys. 235 (2003), 255–273. DOI 10.1007/s00220-003-0810-z | MR 1969728
[12] Dubois-Violette, M., Henneaux, M.: Tensor fields of mixed Young symmetry type and N-complexes. Comm. Math. Phys. 226 (2) (2002), 393–418. DOI 10.1007/s002200200610 | MR 1892459
[13] Hallowell, K., Waldron, A.: Supersymmetric quantum mechanics and super-Lichnerowicz algebras. Comm. Math. Phys. 278 (3) (2008), 775–801. DOI 10.1007/s00220-007-0393-1 | MR 2373443
[14] Hull, C.M.: Strongly coupled gravity and duality. Nuclear Phys. B 583 (1–2) (2000), 237–259. MR 1776849
[15] Hull, C.M.: Duality in gravity and higher spin gauge fields. J. High Energy Phys. (9) (2001), 25 pp., Paper 27. DOI 10.1088/1126-6708/2001/09/027 | MR 1867173
[16] Khoo, F.S.: Generalized Geometry Approaches to Gravity. Ph.D. thesis, Jacobs University, Bremen, Germany, 2016.
[17] Lawson, H.B., Michelsohn, M-L.: Spin geometry. Princeton Math. Ser. 38 (1989), xii+427 pp. MR 1031992
[18] Molotkov, V.: Infinite-dimensional and colored supermanifolds. J. Nonlinear Math. Phys. 17 Suppl. 1 (2010), 375–446. DOI 10.1142/S140292511000088X | MR 2827484
[19] Poncin, N.: Towards integration on colored supermanifolds. Banach Center Publ. (2016), 201–217, In: Geometry of jets and fields. MR 3642399
[20] Pradines, J.: Représentation des jets non holonomes par des morphismes vectoriels doubles soudés. C. R. Acad. Sci. Paris Sér. A 278 (1974), 1523–1526. MR 0388432 | Zbl 0285.58002
[21] Vaintrob, A.: Darboux theorem and equivariant Morse lemma. J. Geom. Phys. 18 (1) (1996), 59–75. DOI 10.1016/0393-0440(95)00003-8 | MR 1370829
[22] Voronov, Th.: Geometric integration theory on supermanifolds. Soviet Scientific Reviews, Section C: Mathematical Physics Reviews, 9, Part 1 (1991), iv+138 pp. MR 1202882
[23] Voronov, Th.: Q-manifolds and Mackenzie theory. Comm. Math. Phys. 315 (2012), 279–310. DOI 10.1007/s00220-012-1568-y | MR 2971727 | Zbl 1261.53080
Partner of
EuDML logo