Previous |  Up |  Next

Article

Title: Existence and uniqueness of solutions of the fractional integro-differential equations in vector-valued function space (English)
Author: Rachid, Bahloul
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 55
Issue: 2
Year: 2019
Pages: 97-108
Summary lang: English
.
Category: math
.
Summary: The aim of this work is to study the existence and uniqueness of solutions of the fractional integro-differential equations $\frac{d}{dt}[x(t) - L(x_{t})]= A[x(t)- L(x_{t})]+G(x_{t})+ \frac{1}{\Gamma (\alpha )} \int _{- \infty }^{t} (t-s)^{\alpha - 1} ( \int _{- \infty }^{s}a(s-\xi )x(\xi ) d \xi )ds+f(t)$, ($\alpha > 0$) with the periodic condition $x(0) = x(2\pi )$, where $a \in L^{1}(\mathbb{R}_{+})$ . Our approach is based on the R-boundedness of linear operators $L^{p}$-multipliers and UMD-spaces. (English)
Keyword: periodic solution
Keyword: $L^{p}$-multipliers
Keyword: UMD-spaces
MSC: 43A15
MSC: 45D05
MSC: 45N05
idZBL: Zbl 07088761
idMR: MR3964437
DOI: 10.5817/AM2019-2-97
.
Date available: 2019-06-07T14:50:45Z
Last updated: 2020-02-27
Stable URL: http://hdl.handle.net/10338.dmlcz/147749
.
Reference: [2] Arendt, W.: Semigroups and evolution equations: functional calculus, regularity and kernel estimates.Handb. Differ. Equ., vol. I, North-Holland, Amsterdam, 2004, pp. 1–85. MR 2103696
Reference: [3] Arendt, W., Bu, S.: The operator-valued Marcinkiewicz multiplier theorem and maximal regularity.Math. Z. 240 (2002), 311–343. Zbl 1018.47008, MR 1900314, 10.1007/s002090100384
Reference: [4] Arendt, W., Bu, S.: Operator-valued Fourier multipliers on periodic Besov spaces and applications.Proc. Edinb. Math. Soc. (2) 47 (2004), 15–33. MR 2064734
Reference: [5] Bourgain, J.: Vector-valued Hausdorff-Young inequalities and applications.Geometric Aspects of Functional Analysis (1986/1987),, vol. 1317, Lecture Notes in Math., Springer Verlag Berlin, 1986, pp. 239–249. MR 0950985
Reference: [6] Bourgain, J.: Vector-valued singular integrals and the $H^1$-BMO duality.probability theory and harmonic analysis ed., Marcel Dekker, New York, 1986. MR 0830227
Reference: [7] Bu, S.: Maximal regularity for integral equations in Banach spaces.Taiwanese J. Math. 15 (1) (2011), 229–240. MR 2780282, 10.11650/twjm/1500406172
Reference: [8] Bu, S., Fang, F.: Periodic solutions for second order integro-differential equations with infinite delay in Banach spaces.Studia Math. 184 (2) (2008), 103–119. MR 2365804, 10.4064/sm184-2-1
Reference: [9] Cai, G., Bu, S.: Well-posedness of second order degenerate integro-differential equations with infinite delay in vector-valued function spaces.Math. Nachr. 289 (2016), 436–451. MR 3481298, 10.1002/mana.201400112
Reference: [10] Cavalcanti, M.M., Cavalcanti, V.N. Domingos, Guesmia, A.: Weak stability for coupled wave and/or Petrovsky systems with complementary frictional damping and infinite memory.J. Differential Equations 259 (2015), 7540–7577. MR 3401605, 10.1016/j.jde.2015.08.028
Reference: [11] Clément, Ph., Da Prato, G.: Existence and regularity results for an integral equation with infinite delay in a Banach space.Integral Equations Operator Theory 11 (1988), 480–500. MR 0950513, 10.1007/BF01199303
Reference: [12] Clément, Ph., de Pagter, B., Sukochev, F.A., Witvliet, M.: Schauder decomposition and multiplier theorems.Studia Math. 138 (2000), 135–163. MR 1749077
Reference: [13] Clément, Ph., Prüss, J.: An operator-valued transference principle and maximal regularity on vector-valued $Lp$-spaces.Evolution equations and their applications in physical and life sciences (Bad Herrenalb, 1998), Lecture Notes in Pure and Appl. Math., vol. 215, Dekker, New York, 2001, pp. 67–87. MR 1816437
Reference: [14] Da Prato, G., Lunardi, A.: Periodic solutions for linear integrodifferential equations with infinite delay in Banach spaces.Differential Equations in Banach spaces, Lecture Notes in Math., vol. 1223, Springer, Berlin, 1986, pp. 49–60. MR 0872516
Reference: [15] de Pagter, B., Witvliet, H.: Unconditional decompositions and $UMD$ spaces.Publ. Math. Besançon, Fasc. 16 (1998), 79–111. MR 1768325
Reference: [16] Denk, R., Hieber, M., Prüss, Jan: R-boundedness, Fourier multipliers and problems of elliptic and parabolic type.Mem. Amer. Math. Soc. 788 (2003). MR 2006641
Reference: [17] Girardi, M., Weis, L.: Operator-valued Fourier multiplier theorems on Besov spaces.Math. Nachr. 251 (2003), 34–51. MR 1960803, 10.1002/mana.200310029
Reference: [18] Girardi, M., Weis, L.: Operator-valued Fourier multipliers and the geometry of Banach spaces.J. Funct. Anal. 204 (2) (2003), 320–354. MR 2017318, 10.1016/S0022-1236(03)00185-X
Reference: [19] Keyantuo, V., Lizama, C.: Fourier multipliers and integro-differential equations in Banach spaces.J. London Math. Soc. 69 (3) (2004), 737–750. MR 2050043, 10.1112/S0024610704005198
Reference: [20] Keyantuo, V., Lizama, C.: Periodic solutions of second order differential equations in Banach spaces.Math. Z. 253 (2006), 489–514. MR 2221083, 10.1007/s00209-005-0919-1
Reference: [21] Keyantuo, V., Lizama, C., Poblete, V.: Periodic solutions of integro-differential equations in vector-valued function spaces.J. Differential Equations 246 (2009), 1007–1037. MR 2474584, 10.1016/j.jde.2008.09.007
Reference: [22] Koumla, S., Ezzinbi, Kh., Bahloul, R.: Mild solutions for some partial functional integrodifferential equations with finite delay in Fréchet spaces.SeMA J. 74 (4) (2017), 489–501. MR 3736690, 10.1007/s40324-016-0096-7
Reference: [23] Kunstmann, P.C., Weis, L.: Maximal $L_p$-regularity for parabolic equations, Fourier multiplier theorems and $H^\infty $-functional calculus.Functional analytic methods for evolution equations, Lecture Notes in Math., vol. 1855, Springer, Berlin, 2004, pp. 65–311. MR 2108959
Reference: [24] Lizama, C.: Fourier multipliers and periodic solutions of delay equations in Banach spaces.J. Math. Anal. Appl. 324 (1) (2006), 921–933. MR 2265090, 10.1016/j.jmaa.2005.12.043
Reference: [25] Lizama, C., Poblete, V.: Periodic solutions of fractional differential equations with delay.Journal of Evolution Equations 11 (2011), 57–70. MR 2780573, 10.1007/s00028-010-0081-z
Reference: [26] Poblete, V.: Solutions of second-order integro-differental equations on periodic Besov space.Proc. Edinburgh Math. Soc. (2) 50 (20) (2007), 477–492. MR 2334958
Reference: [27] Suresh Kumar, P., Balachandran, K., Annapoorani, N.: Controllability of nonlinear fractional Langevin delay systems.Nonlinear Analysis: Modelling and Control 23 (3) (2017), 321–340, https://doi.org/10.15388/NA.2018.3.3. MR 3798269, 10.15388/NA.2018.3.3
Reference: [28] Weis, L.: A new approach to maximal $L_p$-regularity.Lect. Notes Pure Appl. Math. 2115 (2001), 195–214. MR 1818002
Reference: [29] Weis, L.: Operator-valued Fourier multiplier theorems and maximal $L_p$-regularity.Math. Ann. 319 (2001), 735–758. MR 1825406, 10.1007/PL00004457
.

Files

Files Size Format View
ArchMathRetro_055-2019-2_3.pdf 585.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo