[2] Clark, G. W., Oppenheimer, S. F.:
Quasireversibility methods for non-well-posed problems. Electron. J. Differ. Equ. 1994 (1994), 9 pages.
MR 1302574 |
Zbl 0811.35157
[5] Fury, M. A.:
Modified quasi-reversibility method for nonautonomous semilinear problems. Electron. J. Diff. Eqns., Conf. 20 (2013), 65-78.
MR 3128069 |
Zbl 06283623
[6] Goldstein, J. A.:
Semigroups of Linear Operators and Applications. Oxford Mathematical Monographs, Oxford University Press, Oxford (1985).
MR 0790497 |
Zbl 0592.47034
[9] Jana, A., Nair, M. T.:
A truncated spectral regularization method for a source identification problem. (to appear) in J. Anal.
DOI 10.1007/s41478-018-0080-y
[10] Lattès, R., Lions, J.-L.:
Méthode de quasi-réversibilité et applications. Travaux et Recherches Mathématiques 15, Dunod, Paris French (1967).
MR 0232549 |
Zbl 0159.20803
[16] Tuan, N. H.:
Regularization for a class of backward parabolic problems. Bull. Math. Anal. Appl. 2 (2010), 18-26.
MR 2658124 |
Zbl 1312.35189
[18] Tuan, N. H., Trong, D. D., Quan, P. H.:
On a backward Cauchy problem associated with continuous spectrum operator. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 73 (2010), 1966-1972.
DOI 10.1016/j.na.2010.05.025 |
MR 2674176 |
Zbl 1197.35306