Previous |  Up |  Next

Article

Title: Presentations for subsemigroups of $PD_n$ (English)
Author: Umar, Abdullahi
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 69
Issue: 2
Year: 2019
Pages: 417-426
Summary lang: English
.
Category: math
.
Summary: Let $[n]=\{1,\ldots ,n\}$ be an $n$-chain. We give presentations for the following transformation semigroups: the semigroup of full order-decreasing mappings of $[n]$, the semigroup of partial one-to-one order-decreasing mappings of $[n]$, the semigroup of full order-preserving and order-decreasing mappings of $[n]$, the semigroup of partial one-to-one order-preserving and order-decreasing mappings of $[n]$, and the semigroup of partial order-preserving and order-decreasing mappings of $[n]$. (English)
Keyword: presentation
Keyword: order-decreasing mapping
Keyword: order-preserving mapping
Keyword: transformation semigroups
MSC: 20M20
MSC: 20M30
idZBL: Zbl 07088794
idMR: MR3959954
DOI: 10.21136/CMJ.2018.0343-17
.
Date available: 2019-05-24T08:58:14Z
Last updated: 2021-07-05
Stable URL: http://hdl.handle.net/10338.dmlcz/147734
.
Reference: [1] Aĭzenštat, A. J.: Defining relations of finite symmetric semigroups.Mat. Sb. N.Ser. 45 (1958), 261-280 Russian. Zbl 0081.01901, MR 0101275
Reference: [2] Aĭzenštat, A. J.: The defining relations of the endomorphism semigroup of a finite linearly ordered set.Sib. Mat. Zh. 3 (1962), Russian 161-169. Zbl 0114.01702, MR 0148781
Reference: [3] Easdown, D., East, J., FitzGerald, D. G.: A presentation of the dual symmetric inverse monoid.Int. J. Algebra Comput. 18 (2008), 357-374. Zbl 1158.20326, MR 2403826, 10.1142/S0218196708004470
Reference: [4] East, J.: A presentation of the singular part of the symmetric inverse monoid.Commun. Algebra 34 (2006), 1671-1689. Zbl 1099.20029, MR 2229484, 10.1080/00927870500542689
Reference: [5] East, J.: A presentation for the singular part of the full transformation semigroup.Semigroup Forum 81 (2010), 357-379. Zbl 1207.20058, MR 2678722, 10.1007/s00233-010-9250-1
Reference: [6] East, J.: Presentations for singular subsemigroups of the partial transformation semigroup.Int. J. Algebra Comput. 20 (2010), 1-25. Zbl 1201.20063, MR 2655913, 10.1142/S0218196710005509
Reference: [7] East, J.: Generators and relations for partition monoids and algebras.J. Algebra 339 (2011), 1-26. Zbl 1277.20069, MR 2811310, 10.1016/j.jalgebra.2011.04.008
Reference: [8] East, J.: On the singular part of the partition monoid.Int. J. Algebra Comput. 21 (2011), 147-178. Zbl 1229.20066, MR 2787456, 10.1142/S021819671100611X
Reference: [9] East, J.: Defining relations for idempotent generators in finite full transformation semigroups.Semigroup Forum 86 (2013), 451-485. Zbl 1273.20065, MR 3053774, 10.1007/s00233-012-9447-6
Reference: [10] East, J.: Defining relations for idempotent generators in finite partial transformation semigroups.Semigroup Forum 89 (2014), 72-76. Zbl 1304.20074, MR 3249870, 10.1007/s00233-013-9512-9
Reference: [11] East, J.: A symmetrical presentation for the singular part of the symmetric inverse monoid.Algebra Univers. 74 (2015), 207-228. Zbl 1332.20061, MR 3397434, 10.1007/s00012-015-0347-y
Reference: [12] Fernandes, V. H.: The monoid of all injective orientation preserving partial transformations on a finite chain.Commun. Algebra 28 (2000), 3401-3426. Zbl 0952.20048, MR 1765325, 10.1080/00927870008827033
Reference: [13] Fernandes, V. H., Gomes, G. M. S., Jesus, M. M.: Presentations for some monoids of injective partial transformations on a finite chain.Southeast Asian Bull. Math. 28 (2004), 903-918. Zbl 1078.20060, MR 2115137
Reference: [14] Fernandes, V. H., Gomes, G. M. S., Jesus, M. M.: Presentations for some monoids of partial transformations on a finite chain.Commun. Algebra 33 (2005), 587-604. Zbl 1072.20079, MR 2124347, 10.1081/AGB-200047446
Reference: [15] Ganyushkin, O., Mazorchuk, V.: Classical Finite Transformation Semigroups. An Introduction.Algebra and Applications 9, Springer, London (2009). Zbl 1166.20056, MR 2460611, 10.1007/978-1-84800-281-4
Reference: [16] Ganyushkin, O., Mazorchuk, V.: On Kiselman quotients of 0-Hecke monoids.Int. Electron. J. Algebra 10 (2011), 174-191. Zbl 1263.20053, MR 2821178
Reference: [17] Higgins, P. M.: A proof of Simon's theorem on piecewise testable languages.Theor. Comput. Sci. 178 (1997), 257-264. Zbl 0901.68093, MR 1453853, 10.1016/S0304-3975(96)00230-7
Reference: [18] Kudryavtseva, G., Mazorchuk, V.: On presentations of Brauer-type monoids.Cent. Eur. J. Math. 4 (2006), 413-434. Zbl 1130.20041, MR 2233859, 10.2478/s11533-006-0017-6
Reference: [19] Laradji, A., Umar, A.: Combinatorial results for semigroups of order-decreasing partial transformations.J. Integer Seq. 7 (2004), Art. 04.3.8, 14 pages. Zbl 1064.05016, MR 2110779
Reference: [20] Maltcev, V.: Topics in Combinatorial Semigroup Theory.Ph.D. Thesis, University of St. Andrews, United Kingdom (2012). MR 3271783
Reference: [21] Maltcev, V., Mazorchuk, V.: Presentation of the singular part of the Brauer monoid.Math. Bohem. 132 (2007), 297-323. Zbl 1163.20035, MR 2355660
Reference: [22] Mazorchuk, V., Steinberg, B.: Double Catalan monoids.J. Algebr. Comb. 36 (2012), 333-354. Zbl 1259.05190, MR 2969066, 10.1007/s10801-011-0336-y
Reference: [23] Popova, L. M.: Defining relations of a semigroup of partial endomorphisms of a finite linearly ordered set.Leningr. Gos. Ped. Inst. A. I. Gertsen, Uch. Zap. 238 (1962), 78-88 Russian. Zbl 0214.27002, MR 0177050
Reference: [24] Ruškuc, N.: Matrix semigroups---generators and relations.Semigroup Forum 51 (1995), 319-333. Zbl 0840.20061, MR 1351958, 10.1007/BF02573640
Reference: [25] Ruškuc, N.: Semigroup Presentations.Ph.D. Thesis, University of St. Andrews, United Kingdom (1995).
Reference: [26] Solomon, A.: Catalan monoids, monoids of local endomorphisms, and their presentations.Semigroup Forum 53 (1996), 351-368. Zbl 0862.20049, MR 1406781, 10.1007/BF02574150
Reference: [27] Umar, A.: On the semigroups of order-decreasing finite full transformations.Proc. R. Soc. Edinb., Sect. A 120 (1992), 129-142. Zbl 0746.20048, MR 1149989, 10.1017/S0308210500015031
Reference: [28] Umar, A.: Semigroups of Order-Decreasing Transformations.Ph.D. Thesis, University of St. Andrews, United Kingdom (1992). MR 1491911
Reference: [29] Umar, A.: On the semigroups of partial one-to-one order-decreasing finite transformations.Proc. R. Soc. Edinb., Sect. A 123 (1993), 355-363. Zbl 0789.20075, MR 1215419, 10.1017/S0308210500025737
Reference: [30] Umar, A.: Presentations for subsemigroups of $PD_n$.Available at https://arxiv.org/abs/1702.02788 (2017), 7 pages.
.

Files

Files Size Format View
CzechMathJ_69-2019-2_10.pdf 275.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo