Previous |  Up |  Next

Article

Keywords:
antilinear map; $\ast $-structure; Hopf $\ast $-algebra
Summary:
We investigate the structures of Hopf $\ast $-algebra on the Radford algebras over $\mathbb {C}$. All the $*$-structures on $H$ are explicitly given. Moreover, these Hopf $*$-algebra structures are classified up to equivalence.
References:
[1] Chen, H. X.: A class of noncommutative and noncocommutative Hopf algebras: The quantum version. Commun. Algebra 27 (1999), 5011-5023. DOI 10.1080/00927879908826745 | MR 1709261 | Zbl 0942.16038
[2] Kassel, C.: Quantum Groups. Graduate Texts in Mathematics 155, Springer, New York (1995). DOI 10.1007/978-1-4612-0783-2 | MR 1321145 | Zbl 0808.17003
[3] Lorenz, M.: Representations of finite-dimensional Hopf algebras. J. Algebra 188 (1997), 476-505. DOI 10.1006/jabr.1996.6827 | MR 1435369 | Zbl 0873.16023
[4] Majid, S.: Foundations of Quantum Group Theory. Cambridge University Press, Cambridge (1995). DOI 10.1017/CBO9780511613104 | MR 1381692 | Zbl 0857.17009
[5] Masuda, T., Mimachi, K., Nakagami, Y., Noumi, M., Saburi, Y., Ueno, K.: Unitary representations of the quantum $ SU_q(1,1)$: Structure of the dual space of ${\cal U}_q( sl(2))$. Lett. Math. Phys. 19 (1990), 187-194. DOI 10.1007/BF01039311 | MR 1046342 | Zbl 0704.17007
[6] Mohammed, H. S. E., Li, T., Chen, H.: Hopf $\ast$-algebra structures on $H(1,q)$. Front. Math. China 10 (2015), 1415-1432. DOI 10.1007/s11464-015-0454-2 | MR 3403203 | Zbl 1341.16035
[7] Montgomery, S.: Hopf Algebras and Their Actions on Rings. Regional Conference Series in Mathematics 82, American Mathematical Society, Providence (1993). DOI 10.1090/cbms/082 | MR 1243637 | Zbl 0793.16029
[8] Podleś, P.: Complex quantum groups and their real representations. Publ. Res. Inst. Math. Sci. 28 (1992), 709-745. DOI 10.2977/prims/1195167933 | MR 1195996 | Zbl 0809.17003
[9] Radford, D. E.: The order of the antipode of a finite dimensional Hopf algebra is finite. Am. J. Math. 98 (1976), 333-355. DOI 10.2307/2373888 | MR 0407069 | Zbl 0332.16007
[10] Radford, D. E.: Hopf Algebras. Series on Knots and Everything 49, World Scientific, Hackensack (2012). DOI 10.1142/9789814338660 | MR 2894855 | Zbl 1266.16036
[11] Sweedler, M. E.: Hopf Algebras. Mathematics Lecture Note Series, W. A. Benjamin, New York (1969). MR 0252485 | Zbl 0194.32901
[12] Tucker-Simmons, M.: $\ast$-structures on module-algebras. Available at \ifPdf\pdfurl{ https://arxiv.org/abs/1211.6652v2{https://arxiv.org/}\fi\ifPdf\pdfurl{https://arxiv.org/abs/1211.6652v2}{abs/1211.6652v2}\fi}
[13] Daele, A. Van: The Haar measure on a compact quantum group. Proc. Am. Math. Soc. 123 (1995), 3125-3128. DOI 10.2307/2160670 | MR 1277138 | Zbl 0844.46032
[14] Woronowicz, S. L.: Compact matrix pseudogroups. Commun. Math. Phys. 111 (1987), 613-665. DOI 10.1007/BF01219077 | MR 0901157 | Zbl 0627.58034
[15] Woronowicz, S. L.: Twisted $ SU(2)$ group. An example of non-commutative differential calculus. Publ. Res. Inst. Math. Sci. 23 (1987), 117-181. DOI 10.2977/prims/1195176848 | MR 0890482 | Zbl 0676.46050
[16] Woronowicz, S. L.: Krein-Tannak duality for compact matrix pseudogroups. Twisted $ SU(N)$ groups. Invent. Math. 93 (1988), 35-76. DOI 10.1007/BF01393687 | MR 0943923 | Zbl 0664.58044
Partner of
EuDML logo