[1] Veiga, H. Beirão da:
A new regularity class for the Navier-Stokes equations in $\mathbb R^n$. Chin. Ann. Math., Ser. B 16 (1995), 407-412.
MR 1380578 |
Zbl 0837.35111
[12] Leray, J.:
Sur le mouvement d'un liquide visqueux emplissant l'espace. Acta Math. 63 (1934), 193-248 French \99999JFM99999 60.0726.05.
DOI 10.1007/BF02547354 |
MR 1555394
[13] Neustupa, J., Novotný, A., Penel, P.:
An interior regularity of a weak solution to the Navier-Stokes equations in dependence on one component of velocity. Topics in Mathematical Fluid Mechanics Quad. Mat. 10, Aracne, Rome (2002), 163-183.
MR 2051774 |
Zbl 1050.35073
[16] Pokorný, M.:
On the result of He concerning the smoothness of solutions to the Navier-Stokes equations. Electron. J. Differ. Equ. 2003 (2003), Article No. 11, 8 pages.
MR 1958046 |
Zbl 1014.35073
[18] Robinson, J. C., Rodrigo, J. L., Sadowski, W.:
The Three-Dimensional Navier-Stokes Equations. Classical Theory. Cambridge Studies in Advanced Mathematics 157, Cambridge University Press, Cambridge (2016).
DOI 10.1017/CBO9781139095143 |
MR 3616490 |
Zbl 1358.35002
[20] Skalák, Z.:
On the regularity of the solutions to the Navier-Stokes equations via the gradient of one velocity component. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 104 (2014), 84-89.
DOI 10.1016/j.na.2014.03.018 |
MR 3196890 |
Zbl 1291.35192
[26] Zhou, Y., Pokorný, M.:
On a regularity criterion for the Navier-Stokes equations involving gradient of one velocity component. J. Math. Phys. 50 (2009), Article ID 123514, 11 pages.
DOI 10.1063/1.3268589 |
MR 2582610 |
Zbl 1373.35226