Previous |  Up |  Next

Article

Keywords:
fuzzy connectives; uni-nullnorms; T-norms; T-conorms; nullnorms; uninorms; distributivity equation
Summary:
A uni-nullnorm is a special case of 2-uninorms obtained by letting a uninorm and a nullnorm share the same underlying t-conorm. This paper is mainly devoted to solving the distributivity equation between uni-nullnorms with continuous Archimedean underlying t-norms and t-conorms and some binary operators, such as, continuous t-norms, continuous t-conorms, uninorms, and nullnorms. The new results differ from the previous ones about the distributivity in the class of 2-uninorms, which have not yet been fully characterized.
References:
[1] Aczél, J.: Lectures on Functional Equations and Their Applications. Academia, New York 1966. DOI 10.1002/zamm.19670470321 | MR 0208210 | Zbl 0139.09301
[2] Akella, P.: Structure of n-uninorms. Fuzzy Sets Syst. 158 (2007), 1631-1651. DOI 10.1016/j.fss.2007.02.015 | MR 2341328
[3] Calvo, T., Baets, B. De, Fodor, J. C.: The functional equations of Frank and Alsina for uninorms and nullnorms. Fuzzy Sets Syst. 120 (2001), 385-394. DOI 10.1016/s0165-0114(99)00125-6 | MR 1829256 | Zbl 0977.03026
[4] Baets, B. De: Idempotent uninorms. Eur. J. Oper. Res. 118 (1999), 631-642. DOI 10.1016/s0377-2217(98)00325-7 | Zbl 1178.03070
[5] Drygaś, P., Rak, E.: Distributivity equation in the class of 2-uninorms. Fuzzy Sets Syst. 291 (2015), 82-97. DOI 10.1016/j.fss.2015.02.014 | MR 3463655
[6] Fechner, W., Rak, E., Zedam, L.: The modularity law in some classes of aggregation operators. Fuzzy Sets Syst. 332 (2018), 56-73. DOI 10.1016/j.fss.2017.03.010 | MR 3732249
[7] Fodor, J. C., Yager, R. R., Rybalov, A.: Structure of uninorms. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 5 (1997), 411-427. DOI 10.1142/s0218488597000312 | MR 1471619 | Zbl 1232.03015
[8] Fodor, J. C., Baets, B. De: A single-point characterization of representable uninorms. Fuzzy Sets Syst. 202 (2012), 89-99. DOI 10.1016/j.fss.2011.12.001 | MR 2934788 | Zbl 1268.03027
[9] Klement, E. P., Mesiar, R., Pap, E.: Triangular Norms. Kluwer, Dordrecht 2000. DOI 10.1007/978-94-015-9540-7 | MR 1790096 | Zbl 1087.20041
[10] Li, G., Liu, H. W., Fodor, J.: Single-point characterization of uninorms with nilpotent underlying t-norm and t-conorm. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 22 (2014), 591-604. DOI 10.1142/s0218488514500299 | MR 3252143
[11] Li, G., Liu, H. W.: Distributivity and conditional distributivity of a uninorm with continuous underlying operators over a continuous t-conorm. Fuzzy Sets Syst. 287 (2016), 154-171. DOI 10.1016/j.fss.2015.01.019 | MR 3447024
[12] Mas, M., Mayor, G., Torrens, J.: T-operators. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 7 (1999), 31-50. DOI 10.1142/s0218488599000039 | MR 1691482
[13] Mas, M., Mayor, G., Torrens, J.: The distributivity condition for uninorms and t-operators. Fuzzy Sets Syst. 128 (2002), 209-225. DOI 10.1016/s0165-0114(01)00123-3 | MR 1908427 | Zbl 1005.03047
[14] Mas, M., Mesiar, R., Monserat, M., Torrens, J.: Aggregation operations with annihilator. Internat, J. Gen. Syst. 34 (2015), 17-38. DOI 10.1080/03081070512331318347 | MR 2179736
[15] Min, Y. M., Qin, F.: The distributivity for semi-nullnorms over 2-uninorms. (In Chinese.). J. Jiangxi Normal Univ. (Nature Science) 40 (2016), 3, 263267.
[16] Qin, F., Zhao, B.: The distributive equations for idempotent uninorms and nullnorms. Fuzzy Sets Syst. 155 (2005), 446-458. DOI 10.1016/j.fss.2005.04.010 | MR 2181001 | Zbl 1077.03514
[17] Qin, F.: Distributivity between semi-uninorms and semi-t-operators. Fuzzy Sets Syst. 299 (2015), 66-88. DOI 10.1016/j.fss.2015.10.012 | MR 3510877
[18] Rak, E.: Distributivity equation for nullnorms. J. Electr. Eng. 56 (2005), 53-55. DOI 10.1109/t-aiee.1936.5057143
[19] Rak, E., Drygaś, P.: Distributivity equation between uninorms. J. Electr. Engrg. 57 (2006), 35-38.
[20] Rak, E.: Some remarks about distributivity equation between uninorms. J. Electr. Engrg. 58 (2007), 41-42.
[21] Ruiz-Aguilera, D., Torrens, J.: Distributivity of strong implications over conjunctive and disjunctive uninorms. Kybernetika 42 (2006), 319-336. MR 2253392 | Zbl 1249.03030
[22] Ruiz, D., Torrens, J.: Distributivity and conditional distributivity of a uninorm and a continuous t-conorm. IEEE Trans. Fuzzy Syst. 14 (2006), 180-190. DOI 10.1109/tfuzz.2005.864087
[23] Su, Y., Zong, W., Liu, H. W.: On distributivity equations for uninorms over semi-t-operators. Fuzzy Sets Syst. 287 (2015), 41-65. DOI 10.1016/j.fss.2015.08.001 | MR 3510876
[24] Su, Y., Zong, W., Liu, H. W., Xue, P.: On distributivity equations for semi-t-operators over uninorms. Fuzzy Sets Syst. 287 (2016), 172-183. DOI 10.1016/j.fss.2015.03.009 | MR 3447025
[25] Su, Y., Liu, H. W., Ruiz-Aguilera, D., Riera, J. Vicente, Torrens, J.: On the distributivity property for uninorms. Fuzzy Sets Syst. 287 (2016), 184-202. DOI 10.1016/j.fss.2015.06.023 | MR 3447026
[26] Sun, F., Wang, X. P., Qu, X. B.: Uni-nullnorms and null-uninorms. J. Intell. Fuzzy Syst. 32 (2017), 1969-1981. DOI 10.3233/jifs-161495
[27] Sun, F., Wang, X. P., Qu, X. B.: Characterizations of uni-nullnorms with continuous Archimedean underlying t-norms and t-conorms. Fuzzy Sets Syst. 334 (2018), 24-35. DOI 10.1016/j.fss.2017.03.001 | MR 3742230
[28] Wang, Y. M., Qin, F.: Distributivity for 2-uninorms over semi-uninorms. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 25 (2017), 317-345. DOI 10.1142/s0218488517500131 | MR 3631939
[29] Xie, A. F., Liu, H. W.: On the distributivity of uninorms over nullnorms. Fuzzy Sets Syst. 211 (2013), 62-72. DOI 10.1016/j.fss.2012.05.008 | MR 2991797 | Zbl 1279.03047
[30] Yager, R. R., Rybalov, A.: Uninorm aggregation operators. Fuzzy Sets Syst. 80 (1996), 111-120. DOI 10.1016/0165-0114(95)00133-6 | MR 1389951 | Zbl 0871.04007
[31] Yager, R. R.: Uninorms in fuzzy system modeling. Fuzzy Sets Syst. 122 (2001), 167-175. DOI 10.1016/s0165-0114(00)00027-0 | MR 1839955
Partner of
EuDML logo