[3] Hnětynková, I., Plešinger, M., Sima, D. M., Strakoš, Z., Huffel, S. Van:
The total least squares problem in $AX\approx B$: a new classification with the relationship to the classical works. SIAM J. Matrix Anal. Appl. 32 (2011), 748-770.
DOI 10.1137/100813348 |
MR 2825323 |
Zbl 1235.15016
[4] Hnětynková, I., Plešinger, M., Strakoš, Z.:
The core problem within a linear approximation problem $AX\approx B$ with multiple right-hand sides. SIAM J. Matrix Anal. Appl. 34 (2013), 917-931.
DOI 10.1137/120884237 |
MR 3073354 |
Zbl 1279.65041
[5] Hnětynková, I., Plešinger, M., Strakoš, Z.:
Band generalization of the Golub-Kahan bidiagonalization, generalized Jacobi matrices, and the core problem. SIAM J. Matrix Anal. Appl. 36 (2015), 417-434.
DOI 10.1137/140968914 |
MR 3335497 |
Zbl 1320.65057
[6] Hnětynková, I., Plešinger, M., Žáková, J.:
Modification of TLS algorithm for solving $\mathcal{F}_2$ linear data fitting problems. PAMM, Proc. Appl. Math. Mech. 17 (2017), 749-750.
DOI 10.1002/pamm.201710342
[10] Huffel, S. Van, Vandewalle, J.:
The Total Least Squares Problem: Computational Aspects and Analysis. Frontiers in Applied Mathematics 9, Society for Industrial and Applied Mathematics, Philadelphia (1991).
DOI 10.1137/1.9781611971002 |
MR 1118607 |
Zbl 0789.62054