[3] Galdi, G. P.:
An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Vol. II: Nonlinear Steady Problems. Springer Tracts in Natural Philosophy 39, Springer, New York (1994).
MR 1284206 |
Zbl 0949.35005
[5] Haslinger, J., Neittaanmäki, P.:
Finite Element Approximation for Optimal Shape Design: Theory and Applications. John Wiley & Sons, Chichester (1988).
MR 0982710 |
Zbl 0713.73062
[7] Kufner, A.:
Weighted Sobolev Spaces. A Wiley-Interscience Publication. John Wiley & Sons, New York (1985).
MR 0802206 |
Zbl 0567.46009
[9] Matoušek, I., Cibulka, J.: Analýza tvarovacího cyklu na karuselovém lisu NOVA. Technická univerzita v Liberci, Liberec (1999), Czech.
[11] Rektorys, K.:
The Method of Discretization in Time and Partial Differential Equations. Mathematics and Its Applications 4, D. Reidel Publishing Company, Dordrecht (1982).
MR 0689712 |
Zbl 0505.65029
[15] Vandewalle, S., Piessens, R.:
Efficient parallel algorithms for solving initial-boundary value and time-periodic parabolic partial differential equations. SIAM J. Sci. Stat. Comput. 13 (1992), 1330-1346.
DOI 10.1137/0913075 |
MR 1185649 |
Zbl 0766.65076
[16] Vejvoda, O.:
Partial Differential Equations: Time-Periodic Solutions. Martinus Nijhoff Publishers, Hague (1981).
MR 0653987 |
Zbl 0501.35001