Previous |  Up |  Next

Article

Keywords:
Hypersurfaces; Anisotropic mean curvatures; Wulff Shape; Almost umibilcal
Summary:
We prove that a closed convex hypersurface of the Euclidean space with almost constant anisotropic first and second mean curvatures in the $L^p$-sense is $W^{2,p}$-close (up to rescaling and translations) to the Wulff shape. We also obtain characterizations of geodesic hyperspheres of space forms improving those of \cite {Ro1} and \cite {Ro}.
References:
[1] Lellis, C. De, Müller, S.: Optimal rigidity estimates for nearly umbilical surfaces. J. Diff. Geom., 69, 1, 2005, 75-110, DOI 10.4310/jdg/1121540340 | MR 2169583
[2] Rosa, A. De, Gioffrè, S.: Quantitative stability for anisotropic nearly umbilical hypersurfaces. 2017, arXiv:1705.09994. MR 3896120
[3] Gioffrè, S.: A $W^{2,p}$-estimate for nearly umbilical hypersurfaces. 2016, arXiv:1612.08570.
[4] He, Y., Li, H.: Integral formula of Minkowski type and new characterization of the Wulff shape. Acta Math. Sinica, 24, 4, 2008, 697-704, DOI 10.1007/s10114-007-7116-6 | MR 2393162
[5] Hoffman, D., Spruck, D.: Sobolev and isoperimetric inequalities for Riemannian submanifolds. Comm. Pure Appl. Math., 27, 1974, 715-727, DOI 10.1002/cpa.3160270601 | MR 0365424 | Zbl 0295.53025
[6] Michael, J. H., Simon, L. M.: Sobolev and mean-value inequalities on generalized submanifolds of $R^n$. Comm. Pure Appl. Math., 26, 1973, 361-379, DOI 10.1002/cpa.3160260305 | MR 0344978
[7] Onat, L.: Some characterizations of the Wulff shape. C. R. Math. Acad. Sci. Paris, 348, 17-18, 2010, 997-1000, DOI 10.1016/j.crma.2010.07.028 | MR 2721788
[8] Perez, D.: On nearly umbilical hypersurfaces. 2011, Ph.D. thesis, Universität Zürich.
[9] Roth, J.: Extrinsic radius pinching for hypersurfaces of space forms. Diff. Geom. Appl., 25, 5, 2007, 485-499, DOI 10.1016/j.difgeo.2007.06.017 | MR 2351425
[10] Roth, J.: Rigidity results for geodesic spheres in space forms. Differential Geometry, Proceedings of the VIIIth International Colloquium in Differential Geometry, Santiago de Compostela, 2009, 156-163, World Scientific, MR 2523501
[11] Roth, J.: Une nouvelle caractérisation des sphères géodésiques dans les espaces modèles. Compte-Rendus - Mathématique, 347, 19-20, 2009, 1197-1200, DOI 10.1016/j.crma.2009.09.012 | MR 2567002
[12] Roth, J.: A remark on almost umbilical hypersurfaces. Arch. Math. (Brno), 49, 1, 2013, 1-7, DOI 10.5817/AM2013-1-1 | MR 3073010
[13] Roth, J., Scheuer, J.: Explicit rigidity of almost-umbilical hypersurfaces. 2015, arXiv preprint arXiv:1504.05749. MR 3919552
[14] Topping, P.: Relating diameter and mean curvature for submanifolds of Euclidean space. Comment. Math. Helv., 83, 3, 2008, 539-546, DOI 10.4171/CMH/135 | MR 2410779
[15] Wu, J.Y., Zheng, Y.: Relating diameter and mean curvature for Riemannian submanifolds. Proc. Amer. Math. Soc., 139, 11, 2011, 4097-4104, DOI 10.1090/S0002-9939-2011-10848-7 | MR 2823054
Partner of
EuDML logo