[2] Rosa, A. De, Gioffrè, S.:
Quantitative stability for anisotropic nearly umbilical hypersurfaces. 2017, arXiv:1705.09994.
MR 3896120
[3] Gioffrè, S.: A $W^{2,p}$-estimate for nearly umbilical hypersurfaces. 2016, arXiv:1612.08570.
[6] Michael, J. H., Simon, L. M.:
Sobolev and mean-value inequalities on generalized submanifolds of $R^n$. Comm. Pure Appl. Math., 26, 1973, 361-379,
DOI 10.1002/cpa.3160260305 |
MR 0344978
[8] Perez, D.: On nearly umbilical hypersurfaces. 2011, Ph.D. thesis, Universität Zürich.
[10] Roth, J.:
Rigidity results for geodesic spheres in space forms. Differential Geometry, Proceedings of the VIIIth International Colloquium in Differential Geometry, Santiago de Compostela, 2009, 156-163, World Scientific,
MR 2523501
[13] Roth, J., Scheuer, J.:
Explicit rigidity of almost-umbilical hypersurfaces. 2015, arXiv preprint arXiv:1504.05749.
MR 3919552
[14] Topping, P.:
Relating diameter and mean curvature for submanifolds of Euclidean space. Comment. Math. Helv., 83, 3, 2008, 539-546,
DOI 10.4171/CMH/135 |
MR 2410779