Previous |  Up |  Next

Article

Keywords:
differential graded Lie algebras; adjoint map; cofibrant resolutions
Summary:
We prove that a differential graded Lie algebra is homotopy abelian if its adjoint map into its cochain complex of derivations is trivial in cohomology. The converse is true for cofibrant algebras and false in general.
References:
[1] Bandiera, R.: Nonabelian higher derived brackets. J. Pure Appl. Algebra 219 (2015), 3292–3313. DOI 10.1016/j.jpaa.2014.10.015 | MR 3320220
[2] Bandiera, R.: Homotopy abelian $L_\infty $ algebras and splitting property. Rend. Mat. Appl. 37 (2016), 105–122, http://www1.mat.uniroma1.it/ricerca/rendiconti/37_1-2_(2016)_105-122.html MR 3622306
[3] Hinich, V.: Homological algebra of homotopy algebras. Comm. Algebra 25 (1997), 3291–3323. DOI 10.1080/00927879708826055 | MR 1465117
[4] Iacono, D.: On the abstract Bogomolov-Tian-Todorov theorem. Rend. Mat. Appl. 38 (2017), 175–198, http://www1.mat.uniroma1.it/ricerca/rendiconti/38_2_(2017)_175-198.html MR 3762711
[6] Manetti, M.: On some formality criteria for DG-Lie algebras. J. Algebra 438 (2015), 90–118. DOI 10.1016/j.jalgebra.2015.04.029 | MR 3353026
Partner of
EuDML logo