[1] Arapostathis, A., Borkar, V. S., Fernandez-Gaucherand, F., Ghosh, M. K., Marcus, S. I.:
Discrete-time controlled Markov processes with average cost criterion: A survey. SIAM J. Control Optim. 31 (1993), 282-344.
DOI 10.1137/0331018 |
MR 1205981
[2] Bather, J.:
Optimal decisions procedures for finite Markov chains, Part II. Adv. Appl. Probab. 5 (1973), 328-339.
DOI 10.2307/1426039 |
MR 0368790
[3] Bielecki, T. D., Hernández-Hernández, D., Pliska, S. R.:
Risk-sensitive control of finite state Markov chains in discrete time, with application to portfolio management. Math. Methods Oper. Res. 50 (1999), 167-188.
DOI 10.1007/s001860050094 |
MR 1732397
[4] Cavazos-Cadena, R.:
Value iteration and approximately optimal stationary policies in finite-state average Markov chains. Math. Methods Oper. Res. 56 (2002), 181-196.
DOI 10.1007/s001860200205 |
MR 1938210
[5] Cavazos-Cadena, R.:
Solution to the risk-sensitive average cost optimality equation in a class of Markov decision processes with finite state space. Math. Methods Oper. Res. 57 (2003), 2, 263-285.
DOI 10.1007/s001860200256 |
MR 1973378
[6] Cavazos-Cadena, R.:
Solution of the average cost optimality equation for finite Markov decision chains: risk-sensitive and risk-neutral criteria. Math. Methods Oper. Res. 70 (2009), 541-566.
DOI 10.1007/s00186-008-0277-y |
MR 2558431
[7] Cavazos-Cadena, R., Fernandez-Gaucherand, F.:
Controlled Markov chains with risk-sensitive criteria: average cost, optimality equations and optimal solutions. Math. Methods Oper. Res. 43 (1999), 121-139.
MR 1687362
[8] Cavazos-Cadena, R., Hernández-Hernández, D.:
A characterization exponential functionals in finite Markov chains. Math. Methods Oper. Res. 60 (2004), 399-414.
DOI 10.1007/s001860400373 |
MR 2106091
[9] Cavazos-Cadena, R., Hernández-Hernández, D.:
A characterization of the optimal risk-sensitive average cost in finite controlled Markov chains. Ann. Appl. Probab. 15 (2005), 175-212.
DOI 10.1214/105051604000000585 |
MR 2115041
[10] Cavazos-Cadena, R., Hernández-Hernández, D.:
Necessary and sufficient conditions for a solution to the risk-sensitive Poisson equation on a finite state space. System Control Lett. 58 (2009), 254-258.
DOI 10.1016/j.sysconle.2008.11.001 |
MR 2510639
[11] Cavazos-Cadena, R., Montes-de-Oca, R.:
The value iteration algorithm in risk-sensitive average Markov decision chains with finite state space. Math. Oper. Res. 28 (2003), 752-756.
DOI 10.1287/moor.28.4.752.20515 |
MR 2015911
[12] Cavazos-Cadena, R., Montes-de-Oca, R.:
Nonstationary value iteration in controlled Markov chains with risk-sensitive average criterion. J. Appl. Probab. 42 (2005), 905-918.
DOI 10.1017/s0021900200000991 |
MR 2203811
[13] Cavazos-Cadena, R., Feinberg, A., Montes-de-Oca, R.:
A note on the existence of optimal policies in total reward dynamic programs with compact action sets. Math. Oper. Res. 25 (2000), 657-666.
DOI 10.1287/moor.25.4.657.12112 |
MR 1855371
[14] Gantmakher, F. R.:
The Theory of Matrices. Chelsea, London 1959.
MR 0107649
[15] Howard, R. A.:
Dynamic Programming and Markov Processes. MIT Press, Cambridge, Mass. 1960.
MR 0118514
[20] Markowitz, H.:
Portfolio Selection - Efficient Diversification of Investments. Wiley, New York 1959.
MR 0103768
[22] Ross, S. M.:
Introduction to Stochastic Dynamic Programming. Academic Press, New York 1983.
MR 0749232
[23] Sladký, K.:
Necessary and sufficient optimality conditions for average reward of controlled Markov chains. Kybernetika 9 (1973), 124-137.
MR 0363495
[24] Sladký, K.:
On the set of optimal controls for Markov chains with rewards. Kybernetika 10 (1974), 526-547.
MR 0378842
[25] Sladký, K.:
Growth rates and average optimality in risk-sensitive Markov decision chains. Kybernetika 44 (2008), 205-226.
MR 2428220
[26] Sladký, K.:
Risk-sensitive and average optimality in Markov decision processes. In: Proc. 30th Int. Conf. Math. Meth. Economics 2012, Part II (J.Ramík and D.Stavárek, eds.), Silesian University, School of Business Administration, Karviná 2012, pp. 799-804.
DOI 10.1007/3-540-32539-5_125
[27] Sladký, K.: Risk-sensitive and mean variance optimality in Markov decision processes. Acta Oeconomica Pragensia 7 (2013), 146-161.