Previous |  Up |  Next

Article

Keywords:
controlled Markov processes; finite state space; asymptotic behavior; risk-sensitive average optimality
Summary:
In this note attention is focused on finding policies optimizing risk-sensitive optimality criteria in Markov decision chains. To this end we assume that the total reward generated by the Markov process is evaluated by an exponential utility function with a given risk-sensitive coefficient. The ratio of the first two moments depends on the value of the risk-sensitive coefficient; if the risk-sensitive coefficient is equal to zero we speak on risk-neutral models. Observe that the first moment of the generated reward corresponds to the expectation of the total reward and the second central moment of the reward variance. For communicating Markov processes and for some specific classes of unichain processes long run risk-sensitive average reward is independent of the starting state. In this note we present necessary and sufficient condition for existence of optimal policies independent of the starting state in unichain models and characterize the class of average risk-sensitive optimal policies.
References:
[1] Arapostathis, A., Borkar, V. S., Fernandez-Gaucherand, F., Ghosh, M. K., Marcus, S. I.: Discrete-time controlled Markov processes with average cost criterion: A survey. SIAM J. Control Optim. 31 (1993), 282-344. DOI 10.1137/0331018 | MR 1205981
[2] Bather, J.: Optimal decisions procedures for finite Markov chains, Part II. Adv. Appl. Probab. 5 (1973), 328-339. DOI 10.2307/1426039 | MR 0368790
[3] Bielecki, T. D., Hernández-Hernández, D., Pliska, S. R.: Risk-sensitive control of finite state Markov chains in discrete time, with application to portfolio management. Math. Methods Oper. Res. 50 (1999), 167-188. DOI 10.1007/s001860050094 | MR 1732397
[4] Cavazos-Cadena, R.: Value iteration and approximately optimal stationary policies in finite-state average Markov chains. Math. Methods Oper. Res. 56 (2002), 181-196. DOI 10.1007/s001860200205 | MR 1938210
[5] Cavazos-Cadena, R.: Solution to the risk-sensitive average cost optimality equation in a class of Markov decision processes with finite state space. Math. Methods Oper. Res. 57 (2003), 2, 263-285. DOI 10.1007/s001860200256 | MR 1973378
[6] Cavazos-Cadena, R.: Solution of the average cost optimality equation for finite Markov decision chains: risk-sensitive and risk-neutral criteria. Math. Methods Oper. Res. 70 (2009), 541-566. DOI 10.1007/s00186-008-0277-y | MR 2558431
[7] Cavazos-Cadena, R., Fernandez-Gaucherand, F.: Controlled Markov chains with risk-sensitive criteria: average cost, optimality equations and optimal solutions. Math. Methods Oper. Res. 43 (1999), 121-139. MR 1687362
[8] Cavazos-Cadena, R., Hernández-Hernández, D.: A characterization exponential functionals in finite Markov chains. Math. Methods Oper. Res. 60 (2004), 399-414. DOI 10.1007/s001860400373 | MR 2106091
[9] Cavazos-Cadena, R., Hernández-Hernández, D.: A characterization of the optimal risk-sensitive average cost in finite controlled Markov chains. Ann. Appl. Probab. 15 (2005), 175-212. DOI 10.1214/105051604000000585 | MR 2115041
[10] Cavazos-Cadena, R., Hernández-Hernández, D.: Necessary and sufficient conditions for a solution to the risk-sensitive Poisson equation on a finite state space. System Control Lett. 58 (2009), 254-258. DOI 10.1016/j.sysconle.2008.11.001 | MR 2510639
[11] Cavazos-Cadena, R., Montes-de-Oca, R.: The value iteration algorithm in risk-sensitive average Markov decision chains with finite state space. Math. Oper. Res. 28 (2003), 752-756. DOI 10.1287/moor.28.4.752.20515 | MR 2015911
[12] Cavazos-Cadena, R., Montes-de-Oca, R.: Nonstationary value iteration in controlled Markov chains with risk-sensitive average criterion. J. Appl. Probab. 42 (2005), 905-918. DOI 10.1017/s0021900200000991 | MR 2203811
[13] Cavazos-Cadena, R., Feinberg, A., Montes-de-Oca, R.: A note on the existence of optimal policies in total reward dynamic programs with compact action sets. Math. Oper. Res. 25 (2000), 657-666. DOI 10.1287/moor.25.4.657.12112 | MR 1855371
[14] Gantmakher, F. R.: The Theory of Matrices. Chelsea, London 1959. MR 0107649
[15] Howard, R. A.: Dynamic Programming and Markov Processes. MIT Press, Cambridge, Mass. 1960. MR 0118514
[16] Howard, R. A., Matheson, J.: Risk-sensitive Markov decision processes. Manag. Sci. 23 (1972), 356-369. DOI 10.1287/mnsc.18.7.356 | MR 0292497
[17] Mandl, P.: On the variance in controlled Markov chains. Kybernetika 7 (1971), 1-12. MR 0286178 | Zbl 0215.25902
[18] Mandl, P.: Estimation and control in Markov chains. Adv. Appl. Probab. 6 (1974), 40-60. DOI 10.2307/1426206 | MR 0339876
[19] Markowitz, H.: Portfolio selection. J. Finance 7 (1952), 77-92. DOI 10.1111/j.1540-6261.1952.tb01525.x | MR 0103768
[20] Markowitz, H.: Portfolio Selection - Efficient Diversification of Investments. Wiley, New York 1959. MR 0103768
[21] Puterman, M. L.: Markov Decision Processes - Discrete Stochastic Dynamic Programming. Wiley, New York 1994. DOI 10.1002/9780470316887 | MR 1270015
[22] Ross, S. M.: Introduction to Stochastic Dynamic Programming. Academic Press, New York 1983. MR 0749232
[23] Sladký, K.: Necessary and sufficient optimality conditions for average reward of controlled Markov chains. Kybernetika 9 (1973), 124-137. MR 0363495
[24] Sladký, K.: On the set of optimal controls for Markov chains with rewards. Kybernetika 10 (1974), 526-547. MR 0378842
[25] Sladký, K.: Growth rates and average optimality in risk-sensitive Markov decision chains. Kybernetika 44 (2008), 205-226. MR 2428220
[26] Sladký, K.: Risk-sensitive and average optimality in Markov decision processes. In: Proc. 30th Int. Conf. Math. Meth. Economics 2012, Part II (J.Ramík and D.Stavárek, eds.), Silesian University, School of Business Administration, Karviná 2012, pp. 799-804. DOI 10.1007/3-540-32539-5_125
[27] Sladký, K.: Risk-sensitive and mean variance optimality in Markov decision processes. Acta Oeconomica Pragensia 7 (2013), 146-161.
[28] Dijk, N. M. van, Sladký, K.: On the total reward variance for continuous-time Markov reward chains. J. Appl. Probab. 43 (2006), 1044-1052. DOI 10.1017/s0021900200002412 | MR 2274635
Partner of
EuDML logo