Previous |  Up |  Next

Article

Keywords:
multistage stochastic optimization; nested distance; portfolio models
Summary:
Multistage stochastic optimization requires the definition and the generation of a discrete stochastic tree that represents the evolution of the uncertain parameters in time and space. The dimension of the tree is the result of a trade-off between the adaptability to the original probability distribution and the computational tractability. Moreover, the discrete approximation of a continuous random variable is not unique. The concept of the best discrete approximation has been widely explored and many enhancements to adjust and fix a stochastic tree in order to represent as well as possible the real distribution have been proposed. Yet, often, the same generation algorithm can produce multiple trees to represent the random variable. Therefore, the recent literature investigates the concept of distance between trees which are candidate to be adopted as stochastic framework for the multistage model optimization. The contribution of this paper is to compute the nested distance between a large set of multistage and multivariate trees and, for a sample of basic financial problems, to empirically show the positive relation between the tree distance and the distance of the corresponding optimal solutions, and between the tree distance and the optimal objective values. Moreover, we compute a lower bound for the Lipschitz constant that bounds the optimal value distance.
References:
[1] Birge, J. R., Louveaux, F.: Introduction to Stochastic Programming. Springer Science and Business Media, 2011. MR 2807730
[2] Consigli, G., Moriggia, V., Benincasa, E., Landoni, G., Petronio, F., Vitali, S., Tria, M. di, Skoric, M., Uristani, A.: Optimal multistage defined-benefit pension fund management. In: Recent Advances in Commmodity and Financial Modeling: Quantitative methods in Banking, Finance, Insurance, Energy and Commodity markets (G. Consigli, S. Stefani, and G. Zambruno eds.), Springer's International Series in Operations Research and Management Science, 2017. DOI 10.1007/978-3-319-61320-8_13 | MR 3702011
[3] Dupačová, J., Hurt, J., Štěpán, J.: Stochastic Modeling in Economics and Finance. Applied Optimization, Springer, 2002. DOI 10.1007/b101992 | MR 2008457
[4] Kilianová, S., Pflug, G. C.: Optimal pension fund management under multi-period risk minimization. Ann. Oper. Res. 166 (2009), 1, 261-270. DOI 10.1007/b101992 | MR 2471003
[5] Kopa, M., Petrová, B.: Multistage risk premiums in portfolio optimization. Kybernetika 53 (2017), 6, 992-1011. DOI 10.14736/kyb-2017-6-0992 | MR 3758931
[6] Kopa, M., Moriggia, V., Vitali, S.: Individual optimal pension allocation under stochastic dominance constraints. Ann. Oper. Res. 260 (2018), 1,2, 255-291. DOI 10.1007/s10479-016-2387-x | MR 3741562
[7] Kovacevic, R. M., Pichler, A.: Tree approximation for discrete time stochastic processes: a process distance approach. Ann. Oper. Res. 235 (2015), 1, 395-421. DOI 10.1007/s10479-015-1994-2 | MR 3428599
[8] Maggioni, F., Pflug, G. C.: Bounds and approximations for multistage stochastic programs. SIAM J. Optim. 26 (2016), 1, 831-855. DOI 10.1137/140971889 | MR 3477324
[9] Maggioni, F., Allevi, E., Bertocchi, M.: Bounds in multistage linear stochastic programming. J. Optim. Theory Appl. 163 (2014), 1, 200-229. DOI 10.1007/s10957-013-0450-1 | MR 3260982
[10] Maggioni, F., Allevi, E., Bertocchi, M.: Monotonic bounds in multistage mixed-integer liner stochastic programming. Comput. Management Sci. 13 (2016), 3, 423-457. DOI 10.1007/s10287-016-0254-5 | MR 3514994
[11] Pflug, G. C., Pichler, A.: A distance for multistage stochastic optimization models. SIAM J. Optim. 22 (2012), 1, 1-23. DOI 10.1137/110825054
[12] Pflug, G. C., Pichler, A.: Multistage Stochastic Optimization. Springer, 2014. DOI 10.1007/978-3-319-08843-3
[13] Pflug, G. C., Pichler, A.: Convergence of the smoothed empirical process in nested distance. Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II, Institut fűr Mathematik (J. L. Higle, W. Römisch, and S. Surrajeet, eds.), 2015.
[14] Pflug, G. C., Pichler, A.: From empirical observations to tree models for stochastic optimization: Convergence properties. SIAM J. Optim. 26 (2016), 3, 1715-1740. DOI 10.1137/15m1043376 | MR 3543169
[15] Powell, W. B.: Clearing the jungle of stochastic optimization. Informs TutORials, 2014. DOI 10.1287/educ.2014.0128
[16] Rockafellar, T. R., Uryasev, S.: Optimization of conditional value-at-risk. J. Risk 2 (2000), 21-42. DOI 10.21314/jor.2000.038
[17] Shapiro, A., Dentcheva, D., Ruszczyński, A.: Lectures on stochastic programing. Modeling and Theory. SIAM Math. Programm. Soc. 2009. MR 3242164
[18] Timonina, A. V.: Multi-stage stochastic optimization: the distance between stochastic scenario processes. Computat. Management Sci. 12 (2015), 1, 171-195. DOI 10.1007/s10287-013-0185-3 | MR 3296230
[19] Vitali, S., Moriggia, V., Kopa, M.: Optimal pension fund composition for an Italian private pension plan sponsor. Comput. Management Sci. 14 (2017), 1, 135-160. DOI 10.1007/s10287-016-0263-4 | MR 3599603
Partner of
EuDML logo