[2] Balke, N. S., Fomby, T. B.:
Large shocks, small shocks, and economic fluctuations: outliers in macroeconomics time series. J. Appl. Econometr. 31 (1994), 307-327.
DOI 10.1002/jae.3950090205
[13] Cipra, T., Hanzák, T.:
Exponential smoothing for time series with outliers. Kybernetika 47 (2011), 165-178.
MR 2828571
[14] Cipra, T., Romera, R.:
Robust Kalman filter and its applications in time series analysis. Kybernetika 27 (1991), 481-494.
MR 1150938
[15] Crevits, R., Croux, C.:
Forecasting using robust exponential smoothing with damped trend and seasonal components. Working paper KBI_1714, KU Leuven, Leuven 2016 (DOI:10.13140/RG.2.2.11791.18080).
DOI 10.13140/RG.2.2.11791.18080)
[18] Dalhaus, R., Rao, S. S.:
A recursive online algorithm for the estimation of time-varying ARCH parameters. Bernoulli 13 (2007), 389-422.
DOI 10.3150/07-bej5009 |
MR 2331257
[19] Engle, R. F.:
Autoregressive conditional heteroskedasticity with estimates of the variance of United Kingdom inflation. Econometrica 50 (1982), 987-1007.
DOI 10.2307/1912773 |
MR 0666121
[20] Eraker, B., Johannes, M., Polson, N.:
The impact of jumps in volatility and returns. J. Finance 58 (2003), 1269-1300.
DOI 10.1111/1540-6261.00566
[21] Fasso, A.: Recursive least squares with ARCH errors and nonparametric modelling of environmental time series. Working Paper 6, University of Bergamo 2009.
[24] Galeano, P., Peña, D.:
Finding outliers in linear and nonlinear time series. In: Robustness and Complex Data Structures (C. Becker, R. Fried, S. Kuhnt, eds.), Springer, Berlin 2013, pp. 243-260.
DOI 10.1007/978-3-642-35494-6_15 |
MR 3135884
[26] Gerencsér, L., Orlovits, Z., Torma, B.: Recursive estimation of GARCH processes. In: Proc. 19th International Symposium on Mathematical Theory and Systems - MTNS (A. Edelmayer, ed.), Eötvös Loránd University, Budapest 2010, pp. 2415-2422.
[28] Gregory, A. V., Reeves, J. J.:
Estimation and inference in ARCH model in the presence of outliers. J. Financ. Econometr. 8 (2010), 547-569.
DOI 10.1093/jjfinec/nbq028
[29] Grillenzoni, C.:
Optimized adaptive prediction. J. Ital. Statist. Soc. 6 (1997), 37-58.
DOI 10.1007/bf03178900
[30] Grillenzoni, C.:
Recursive generalized M-estimators of system parameters. Technometrics 39 (1997), 211-224.
DOI 10.2307/1270909
[31] Hendrych, R., Cipra, T.:
Robustified on-line estimation of the EWMA models: Simulations and applications. In: Proc. 33rd International Conference Mathematical Methods in Economics (D. Martinčák, J. Ircingová, and P. Janeček, eds.). University of West Bohemia, Pilsen 2014, pp. 237-242.
DOI 10.3311/ppee.9684
[34] Hotta, L. K., Tsay, R. S.:
Outliers in GARCH processes. In: Economic time series: Modeling and seasonality (W. R. Bell, S. H. Holan, and T. S. McElroy, eds.). CRC Press, Boca Raton 2012, pp. 337-358.
DOI 10.1201/b11823-20 |
MR 3076022
[37] Kierkegaard, J., Nielsen, J., Jensen, L., Madsen, H.: Estimating GARCH models using recursive methods.
[38] Koch, K. R., Yang, Y.:
Robust Kalman filter for rank deficient observation models. J. Geodesy 72 (1998), 436-441.
DOI 10.1007/s001900050183
[41] Ljung, L.: System Identification: Theory for the User. Prentice Hall PTR, Upper Saddle River 1999.
[42] Ljung, L., Söderström, T. S.:
Theory and Practice of Recursive Identification. MIT Press, Cambridge 1983.
MR 0719192
[43] Michálek, J.:
Robust methods in exponential smoothing. Kybernetika 32 (1996), 289-306.
MR 1438221
[45] Park, B.-J.:
An outlier robust GARCH model and forecasting volatility of exchange rate returns. J. Forecast. 21 (2002), 381-393.
DOI 10.1002/for.827
[48] Ruckdeschel, P., Spangl, B., Pupashenko, D.:
Robust Kalman tracking and smoothing with propagating and non propagating outliers. Statist. Papers 55 (2014), 93-123.
DOI 10.1007/s00362-012-0496-4 |
MR 3152769
[49] Sakata, S., White, H.:
High breakdown point conditional dispersion estimation with application to S&P 500 daily returns volatility. Econometrica 66 (1998), 529-567.
DOI 10.2307/2998574
[50] Shaolin, H. U., Meinke, K., Ouyang, H., Guoji, S.:
Outlier-tolerant Kalman filter of state vectors in linear stochastic system. Int. J. Advanced Computer Sci. Appl. 2 (2011), 37-41.
DOI 10.14569/ijacsa.2011.021206
[51] Söderström, T. S., Stoica, P.: System Identification. Prentice Hall, New York 1989.
[52] Tsay, R. S.:
Analysis of Financial Time Series. Wiley, Hoboken 2013.
MR 2778591
[53] Yang, Y.:
Adaptively robust Kalman filters with applications in navigation. In: Sciences of Geodesy (G. Xu, ed.), Springer, Berlin 2010, pp. 49-82.
DOI 10.14569/ijacsa.2011.021206
[54] Yang, Y., Gao, W., Zhang, X.:
Robust Kalman filtering with constraints: a case study for integrated navigation. J. Geodesy 84 (2010), 373-381.
DOI 10.1007/s00190-010-0374-6
[57] Zhu, K., Ling, S.:
Global self-weighted and local quasi-maximum exponential likelihood estimators for ARMA-GARCH/IGARCH models. Ann. Statist. 39 (2011), 2131-2163.
DOI 10.1214/11-aos895 |
MR 2893864
[58] Zhu, K., Ling, S.:
LADE-based inference for ARMA models with unspecified and heavy-tailed heteroscedastic noises. J. Amer. Statist. Assoc. 110 (2015), 784-794.
DOI 10.1080/01621459.2014.977386 |
MR 3367264