[1] Augustin, F., Gilg, A., Paffrath, M., Rentrop, P., Villegas, M., Wever, U.:
An accuracy comparison of polynomial chaos type methods for the propagation of uncertainties. J. Math. Ind. 3 (2013), 24 pages.
DOI 10.1186/2190-5983-3-2 |
MR 3049138 |
Zbl 1275.65004
[2] Babuška, I., Nobile, F., Tempone, R.:
A stochastic collocation method for elliptic partial differential equations with random input data. SIAM J. Numer. Anal. 45 (2007), 1005-1034.
DOI 10.1137/050645142 |
MR 2318799 |
Zbl 1151.65008
[4] Blatman, G., Sudret, B.:
An adaptive algorithm to build up sparse polynomial chaos expansions for stochastic finite element analysis. Probabilistic Engineering Mechanics 25 (2010), 183-197.
DOI 10.1016/j.probengmech.2009.10.003
[7] Choi, S.-K., Grandhi, R. V., Canfield, R. A., Pettit, C. L.:
Polynomial chaos expansion with latin hypercube sampling for estimating response variability. AIAA J. 42 (2004), 1191-1198.
DOI 10.2514/1.2220
[8] Ditlevsen, O., Madsen, H. O.: Structural Reliability Methods. John Wiley & Sons, Chichester (1996).
[10] Eldred, M. S., Burkardt, J.:
Comparison of non-intrusive polynomial chaos and stochastic collocation methods for uncertainty quantification. The 47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition, Orlando AIAA 2009-976 (2009), 20.
DOI 10.2514/6.2009-976
[12] Fülöp, A., Iványi, M.: Safety of a column in a frame. Probabilistic Assessment of Structures Using Monte Carlo Simulation: Background, Exercises and Software P. Marek et al. Institute of Theoretical and Applied Mechanics, Academy of Sciences of the Czech Republic, Praha, CD, Chapt. 8.10 (2003).
[16] Hosder, S., Walters, R. W., Balch, M.:
Efficient sampling for non-intrusive polynomial chaos applications with multiple uncertain input variables. The 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Honolulu AIAA 2007-1939 (2007), 16.
DOI 10.2514/6.2007-1939
[18] Janouchová, E., Kučerová, A.:
Competitive comparison of optimal designs of experiments for sampling-based sensitivity analysis. Comput. Struct. 124 (2013), 47-60.
DOI 10.1016/j.compstruc.2013.04.009
[19] Janouchová, E., Kučerová, A., Sýkora, J.:
Polynomial chaos construction for structural reliability analysis. Y. Tsompanakis et al. Proceedings of the Fourth International Conference on Soft Computing Technology in Civil, Structural and Environmental Engineering Civil-Comp Press, Stirlingshire (2015), Paper 9.
DOI 10.4203/ccp.109.9
[26] Nobile, F., Tempone, R., Webster, C. G.:
A sparse grid stochastic collocation method for partial differential equations with random input data. SIAM J. Numer. Anal. 46 (2008), 2309-2345.
DOI 10.1137/060663660 |
MR 2421037 |
Zbl 1176.65137
[28] Pettersson, M. P., Iaccarino, G., Nordström, J.:
Polynomial chaos methods. Polynomial Chaos Methods for Hyperbolic Partial Differential Equations. Numerical Techniques for Fluid Dynamics Problems in the Presence of Uncertainties Mathematical Engineering, Springer, Cham (2015), 23-29.
DOI 10.1007/978-3-319-10714-1_3 |
MR 3328389 |
Zbl 1325.76004
[32] Xiu, D.:
Fast numerical methods for stochastic computations: A review. Commun. Comput. Phys. 5 (2009), 242-272.
MR 2513686 |
Zbl 1364.65019