Previous |  Up |  Next

Article

Title: Application of Calderón's inverse problem in civil engineering (English)
Author: Havelka, Jan
Author: Sýkora, Jan
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 63
Issue: 6
Year: 2018
Pages: 687-712
Summary lang: English
.
Category: math
.
Summary: In specific fields of research such as preservation of historical buildings, medical imaging, geophysics and others, it is of particular interest to perform only a non-intrusive boundary measurements. The idea is to obtain comprehensive information about the material properties inside the considered domain while keeping the test sample intact. This paper is focused on such problems, i.e. synthesizing a physical model of interest with a boundary inverse value technique. The forward model is represented here by time dependent heat equation with transport parameters that are subsequently identified using a modified Calderón problem which is numerically solved by a regularized Gauss-Newton method. The proposed model setup is computationally verified for various domains, loading conditions and material distributions. (English)
Keyword: Calderón problem
Keyword: finite element method
Keyword: diffusion equation
Keyword: boundary inverse value method
Keyword: Neumann-to-Dirichlet map
MSC: 35K05
MSC: 65M32
idZBL: Zbl 07031683
idMR: MR3893006
DOI: 10.21136/AM.2018.0323-17
.
Date available: 2019-01-03T09:12:18Z
Last updated: 2021-01-04
Stable URL: http://hdl.handle.net/10338.dmlcz/147564
.
Reference: [1] Allers, A., Santosa, F.: Stability and resolution analysis of a linearized problem in electrical impedance tomography.Inverse Probl. 7 (1991), 515-533. Zbl 0736.35141, MR 1122034, 10.1088/0266-5611/7/4/003
Reference: [2] Bakirov, V. F., Kline, R. A., Winfree, W. P.: Discrete variable thermal tomography.AIP Conf. Proc. 700 (2004), 469-476. 10.1063/1.1711659
Reference: [3] Bakirov, V. F., Kline, R. A., Winfree, W. P.: Multiparameter thermal tomography.AIP Conf. Proc. 700 (2004), 461-468. 10.1063/1.1711658
Reference: [4] Bathe, K.-J.: Finite Element Procedures.Prentice Hall, Upper Saddle River (2006).
Reference: [5] Berenstein, C. A., Tarabusi, E. Casadio: Inversion formulas for the $k$-dimensional Radon transform in real hyperbolic spaces.Duke Math. J. 62 (1991), 613-631. Zbl 0742.44002, MR 1104811, 10.1215/S0012-7094-91-06227-7
Reference: [6] Blue, R. S.: Real-time three-dimensional electrical impedance tomography.Ph.D. Dissertation, R.P.I, Troy (1997).
Reference: [7] Blue, R. S., Isaacson, D., Newell, J. C.: Real-time three-dimensional electrical impedance imaging.Physiological Measurement 21 (2000), 15-26. 10.1088/0967-3334/21/1/303
Reference: [8] Borsic, A., Lionheart, W. R. B., McLeod, C. N.: Generation of anisotropic-smoothness regularization filters for EIT.IEEE Transactions on Medical Imaging 21 (2002), 579-587. 10.1109/tmi.2002.800611
Reference: [9] Brown, R. M., Uhlmann, G. A.: Uniqueness in the inverse conductivity problem for nonsmooth conductivities in two dimensions.Commun. Partial Differ. Equations 22 (1997), 1009-1027. Zbl 0884.35167, MR 1452176, 10.1080/03605309708821292
Reference: [10] Calderón, A. P.: On an inverse boundary value problem.Comput. Appl. Math. 25 (2006), 133-138. Zbl 1182.35230, MR 2321646, 10.1590/S0101-82052006000200002
Reference: [11] Campana, S., Piro, S.: Seeing the Unseen. Geophysics and Landscape Archaeology.CRC Press, London (2008). 10.1201/9780203889558
Reference: [12] Cheney, M., Isaacson, D., Newell, J. C., Simske, S., Goble, J.: NOSER: An algorithm for solving the inverse conductivity problem.Int. J. Imaging Systems and Technology 2 (1990), 66-75. 10.1002/ima.1850020203
Reference: [13] Cheng, K.-S., Isaacson, D., Newell, J. C., Gisser, D. G.: Electrode models for electric current computed tomography.IEEE Transactions on Biomedical Engineering 36 (1989), 918-924. MR 1080512, 10.1109/10.35300
Reference: [14] Dai, T., Adler, A.: Electrical Impedance Tomography reconstruction using $l_1$ norms for data and image terms.Conf. Proc. IEEE Eng. Med. Biol. Soc. 2008 (2008), 2721-2724. 10.1109/IEMBS.2008.4649764
Reference: [15] Groetsch, C. W.: Inverse Problems in the Mathematical Sciences.Vieweg Mathematics for Scientists and Engineers, Vieweg, Braunschweig (1993). Zbl 0779.45001, MR 1247696, 10.1007/978-3-322-99202-4
Reference: [16] Hamilton, S. J., Lassas, M., Siltanen, S.: A direct reconstruction method for anisotropic electrical impedance tomography.Inverse Probl. 30 (2014), Article ID 075007, 33 pages. Zbl 1298.65175, MR 3233020, 10.1088/0266-5611/30/7/075007
Reference: [17] Holder, D. S.: Electrical Impedance Tomography: Methods, History and Applications.Series in Medical Physics and Biomedical Engineering, Taylor & Francis, Portland (2004).
Reference: [18] Huang, C.-H., Chin, S.-C.: A two-dimensional inverse problem in imaging the thermal conductivity of a non-homogeneous medium.Int. J. Heat Mass Transfer 43 (2000), 4061-4071. Zbl 0973.80005, 10.1016/S0017-9310(00)00044-2
Reference: [19] Jones, M. R., Tezuka, A., Yamada, Y.: Thermal tomographic detection of inhomogeneities.J. Heat Transfer 117 (1995), 969-975. 10.1115/1.2836318
Reference: [20] Kirsch, A.: An Introduction to the Mathematical Theory of Inverse Problems.Applied Mathematical Sciences 120, Springer, New York (2011). Zbl 1213.35004, MR 3025302, 10.1007/978-1-4419-8474-6
Reference: [21] Knudsen, K., Lassas, M., Mueller, J. L., Siltanen, S.: Regularized D-bar method for the inverse conductivity problem.Inverse Probl. Imaging 3 (2009), 599-624. Zbl 1184.35314, MR 2557921, 10.3934/ipi.2009.3.599
Reference: [22] Kolehmainen, V., Kaipio, J. P., Orlande, H. R. B.: Reconstruction of thermal conductivity and heat capacity using a tomographic approach.Int. J. Heat Mass Transfer 51 (2008), 1866-1876. Zbl 1140.80396, 10.1016/j.ijheatmasstransfer.2007.06.043
Reference: [23] Kučerová, A., Sýkora, J., Rosić, B., Matthies, H. G.: Acceleration of uncertainty updating in the description of transport processes in heterogeneous materials.J. Comput. Appl. Math. 236 (2012), 4862-4872. Zbl 06078396, MR 2946415, 10.1016/j.cam.2012.02.003
Reference: [24] Ladyženskaja, O. A., Solonnikov, V. A., Ural'ceva, N. N.: Linear and Quasi-Linear Equations of Parabolic Type.Translations of Mathematical Monographs 23, American Mathematical Society, Providence (1968). Zbl 0174.15403, MR 0241822, 10.1090/mmono/023
Reference: [25] Lanczos, C.: Linear Differential Operators.Classics in Applied Mathematics 18, Society for Industrial and Applied Mathematics, Philadelphia (1996). Zbl 0865.34001, MR 1393942, 10.1137/1.9781611971187
Reference: [26] Langer, R. E.: An inverse problem in differential equations.Bull. Am. Math. Soc. 39 (1933), 814-820. Zbl 0008.04603, MR 1562734, 10.1090/S0002-9904-1933-05752-X
Reference: [27] Mamatjan, Y., Borsic, A., Gürsoy, D., Adler, A.: Experimental/clinical evaluation of EIT image reconstruction with $l_1$ data and image norms.J. Phys., Conf. Ser. 434 (2013), 1-4. 10.1088/1742-6596/434/1/012078
Reference: [28] Mueller, J. L., Isaacson, D., Newell, J. C.: Reconstruction of conductivity changes due to ventilation and perfusion from EIT data collected on a rectangular electrode array.Physiological Measurement 22 (2001), 97-106. 10.1088/0967-3334/22/1/313
Reference: [29] Mueller, J. L., Siltanen, S.: Direct reconstructions of conductivities from boundary measurements.SIAM J. Sci. Comput. 24 (2003), 1232-1266. Zbl 1031.78008, MR 1976215, 10.1137/S1064827501394568
Reference: [30] Nachman, A. I.: Global uniqueness for a two-dimensional inverse boundary value problem.Ann. Math. (2) 143 (1996), 71-96. Zbl 0857.35135, MR 1370758, 10.2307/2118653
Reference: [31] Niu, H., Guo, P., Ji, L., Zhao, Q., Jiang, T.: Improving image quality of diffuse optical tomography with a projection-error-based adaptive regularization method.Optics Express 16 (2008), 12423-12434. 10.1364/OE.16.012423
Reference: [32] Rektorys, K.: Variational Methods in Mathematics, Science and Engineering.D. Reidel Publishing Company, Dordrecht (1980). Zbl 0481.49002, MR 0596582
Reference: [33] Santosa, F., Vogelius, M.: A backprojection algorithm for electrical impedance imaging.SIAM J. Appl. Math. 50 (1990), 216-243. Zbl 0691.65087, MR 1036240, 10.1137/0150014
Reference: [34] Siltanen, S., Mueller, J., Isaacson, D.: An implementation of the reconstruction algorithm of A. Nachman for the 2D inverse conductivity problem.Inverse Probl. 16 (2000), 681-699 erratum ibid. 17 2001 1561-1563. Zbl 0962.35193, MR 1862207, 10.1088/0266-5611/16/3/310
Reference: [35] Somersalo, E., Cheney, M., Isaacson, D.: Existence and uniqueness for electrode models for electric current computed tomography.SIAM J. Appl. Math. 52 (1992), 1023-1040. Zbl 0759.35055, MR 1174044, 10.1137/0152060
Reference: [36] Somersalo, E., Cheney, M., Isaacson, D., Isaacson, E.: Layer stripping: a direct numerical method for impedance imaging.Inverse Probl. 7 (1991), 899-926. Zbl 0753.35122, MR 1140322, 10.1088/0266-5611/7/6/011
Reference: [37] Sýkora, J.: Modeling of degradation processes in historical mortars.Adv. Eng. Softw. 70 (2014), 203-212. 10.1016/j.advengsoft.2014.01.004
Reference: [38] Sýkora, J., Krejčí, T., Kruis, J., Šejnoha, M.: Computational homogenization of non-stationary transport processes in masonry structures.J. Comput. Appl. Math. 236 (2012), 4745-4755. Zbl 1259.80007, 10.1016/j.cam.2012.02.031
Reference: [39] Sylvester, J., Uhlmann, G.: A global uniqueness theorem for an inverse boundary value problem.Ann. Math. (2) 125 (1987), 153-169. Zbl 0625.35078, MR 0873380, 10.2307/1971291
Reference: [40] Syren, J.: Theoretical and numerical analysis of the Dirichlet-to-Neumann map in EIT.Master Thesis, University of Helsinki (2016).
Reference: [41] Toivanen, J. M., Tarvainen, T., Huttunen, J. M. J., Savolainen, T., Orlande, H. R. B., Kaipio, J. P., Kolehmainen, V.: 3D thermal tomography with experimental measurement data.Int. J. Heat Mass Transfer 78 (2014), 1126-1134. 10.1016/j.ijheatmasstransfer.2014.07.080
Reference: [42] Vauhkonen, M.: Electrical impedance tomography and prior information.Ph.D. Dissertation, Kuopio University, Joensuu (2007).
Reference: [43] Vauhkonen, M., Lionheart, W. R. B., Heikkinen, L. M., Vauhkonen, P. J., Kaipio, J. P.: A MATLAB package for the EIDORS project to reconstruct two-dimensional EIT images.Physiological Measurement 22 (2001), 107-111. 10.1088/0967-3334/22/1/314
.

Files

Files Size Format View
AplMat_63-2018-6_6.pdf 1.280Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo