Article
Keywords:
universal metric dynamical system; minimal dynamical system
Summary:
We consider dynamical systems of the form $(X,f)$ where $X$ is a compact metric space and $f\colon X\to X$ is either a continuous map or a homeomorphism and provide a new proof that there is no universal metric dynamical system of this kind. The same is true for metric minimal dynamical systems and for metric abstract $\omega$-limit sets, answering a question by Will Brian.
References:
[2] Balcar B., Błaszczyk A.:
On minimal dynamical systems on Boolean algebras. Comment. Math. Univ. Carolin. 31 (1990), no. 1, 7–11.
MR 1056164
[3] Beleznay F., Foreman M.:
The collection of distal flows is not Borel. Amer. J. Math. 117 (1995), no. 1, 203–239.
DOI 10.2307/2375041 |
MR 1314463
[4] Ben Yaacov I., Melleray J., Tsankov T.:
Metrizable universal minimal flows of Polish groups have a comeagre orbit. Geom. Funct. Anal. 27 (2017), no. 1, 67–77.
DOI 10.1007/s00039-017-0398-7 |
MR 3613453
[6] Brian W.: Is there a universal $\omega$-limit set?. available at mathoverflow.net/questions/ 209634.
[9] Morse M., Hedlund G. A.:
Symbolic dynamics II. Sturmian trajectories. Amer. J. Math. 62 (1940), no. 1, 1–42.
DOI 10.2307/2371431 |
MR 0000745
[10] Turek S.:
A note on universal minimal dynamical systems. Comment. Math. Univ. Carolin. 32 (1991), no. 4, 781–783.
MR 1159826