[1] Bach, E.: Discrete Logarithms and Factoring. University of California, Computer Science Division, Berkeley (1984).
[4] Carmichael, R. D.:
The Theory of Numbers. Wiley & Sons, New York (1914),\99999JFM99999 45.0283.10.
MR 0105381
[6] Goldwasser, S.:
New directions in cryptography: twenty some years later (or cryptography and complexity theory: a match made in heaven). Proc. of the 38th Annual IEEE Symposium on Foundations of Computer Science, Foundations of Computer Science (1997), 314-324.
DOI 10.1109/SFCS.1997.646120
[7] Gadiyar, H. Gopalakrishna, Padma, R.:
The discrete logarithm problem over prime fields can be transformed to a linear multivariable Chinese remainder theorem. Available at ArXiv: 1608.07032v1 [math.NT] (2016).
MR 3881901
[8] Gadiyar, H. Gopalkrishna, Maini, K. M. S Sangeeta, Padma, R.:
Cryptography, connections, cocycles and crystals: a $p$-adic exploration of the discrete logarithm problem. Progress in Cryptology---INDOCRYPT 2004, 5th International Conf. on Cryptology in India, Chennai, 2004, Lecture Notes in Comput. Sci. 3348 Springer, Berlin A. Canteaut et al. (2004), 305-314.
DOI 10.1007/978-3-540-30556-9_24 |
MR 2147933 |
Zbl 1115.94008
[13] Kumanduri, R., Romero, C.:
Number Theory with Computer Applications. Prentice Hall, Upper Saddle River (1998).
Zbl 0902.11001
[14] Lerch, M.:
Zur Theorie des Fermatschen Quotienten $\frac{{a^{p-1}-1}}p=q(a)$. Math. Ann. 60 (1905), 471-490 German \99999JFM99999 36.0266.03.
DOI 10.1007/BF01561092 |
MR 1511321
[18] Satoh, T., Araki, K.:
Fermat quotients and the polynomial time discrete log algorithm for anomalous elliptic curves. Comment. Math. Univ. St. Pauli 47 (1998), 81-92.
MR 1624563 |
Zbl 1044.11592
[20] Silverman, J. H.:
Lifting and elliptic curve discrete logarithms. Selected Areas in Cryptography. Proc. of 15th International Workshop on Selected Areas in Cryptography, Sackville, 2008, Lecture Notes in Computer Science 5381 Springer, Berlin R. M. Avanzi et al. (2009), 82-102.
DOI 10.1007/978-3-642-04159-4_6 |
MR 2054769 |
Zbl 1256.94065
[23] Teichmüller, O.: Über die Struktur diskret bewerteter perfekter Körper. Nachr. Ges. Wiss. Göttingen, math.-phys. Kl., FG 1, Neue Folge 1 (1936), 151-161 German \99999JFM99999 62.0110.01.