[5] Bui, T. A.:
The weighted norm inequalities for Riesz transforms of magnetic Schrödinger operators. Differ. Integral Equ. 23 (2010), 811-826.
MR 2675584 |
Zbl 1240.42034
[11] Dziubański, J., Garrigós, G., Martínez, T., Torrea, J. L., Zienkiewicz, J.:
BMO spaces related to Schrödinger operators with potentials satisfying reverse Hölder inequality. Mat. Z. 249 (2005), 329-356.
DOI 10.1007/s00209-004-0701-9 |
MR 2115447 |
Zbl 1136.35018
[12] Dziubański, J., Zienkiewicz, J.:
$H^{p}$ spaces for Schrödinger operators. Fourier Analysis and Related Topics W. Żelazko Banach Center Publications 56, Polish Academy of Sciences, Institute of Mathematics, Warsaw (2002), 45-53.
DOI 10.4064/bc56-0-4 |
MR 1971563 |
Zbl 1039.42018
[13] Feuto, J., Fofana, I., Koua, K.:
Spaces of functions with integrable fractional mean on locally compact groups. Afr. Mat., Sér. III French 15 (2003), 73-91.
MR 2031873 |
Zbl 1047.43004
[14] Feuto, J., Fofana, I., Koua, K.:
Integrable fractional mean functions on spaces of homogeneous type. Afr. Diaspora J. Math. 9 (2010), 8-30.
MR 2516238 |
Zbl 1239.43002
[15] Fofana, I.:
Study of a class of function spaces containing Lorentz spaces. French Afr. Mat. (2) 1 (1988), 29-50.
MR 1080380 |
Zbl 1210.46022
[24] Rao, M. M., Ren, Z. D.:
Theory of Orlicz Spaces. Pure and Applied Mathematics 146, Marcel Dekker, New York (1991).
MR 1113700 |
Zbl 0724.46032
[28] Stein, E. M.:
Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton Mathematical Series 43, Princeton University Press, Princeton (1993).
MR 1232192 |
Zbl 0821.42001
[31] Wang, H.:
Boundedness of fractional integral operators with rough kernels on weighted Morrey spaces. Acta Math. Sin., Chin. Ser. Chinese. English summary 56 (2013), 175-186.
MR 3097397 |
Zbl 1289.42057
[34] Zhong, J.:
Harmonic analysis for some Schrödinger type operators. Ph.D. Thesis, Princeton University (1993).
MR 2689454