[1] Albrecht, A., Iglesias, A.:
The clock ambiguity and the emergence of physical laws. Phys. Rev. D 77 (2008), 063506; arXiv:0708.2743 [hep-th]; S. B. Gryb, Jacobi's Principle and the Disappearance of Time Phys. Rev. D 81 (2010), 044035, arXiv:0804.2900 [gr-qc]; S. B. Gryb and K. Thebault, The role of time in relational quantum theories Found. Phys. 42 (2012),1210–1238 arXiv:1110.2429 [gr-qc].
DOI 10.1103/PhysRevD.77.063506 |
MR 2996626
[2] Batalin, I., Fradkin, E., Fradkina, T.:
Another version for operatorial quantization of dynamical systems with irreducible constraints. Nuclear Phys. B 314 (1989), 158–174, I.A. Batalin and I.V. Tyutin, Existence theorem for the effective gauge algebra in the generalized canonical formalism with abelian conversion of second-class constraints, Internat. J. Modern Phys. A 6 (1991), 3255–3282.
MR 0984074
[3] Bayen, F., Flato, M., Fronsdal, C., Lichnerowicz, A., Sternheimer, D.:
Quantum Mechanics as a deformation of classical mechanics. Lett. Math. Phys. 1 (1977), 521–530.
DOI 10.1007/BF00399745 |
MR 0674337
[4] Bieliavsky, P., Cahen, M., Gutt, S., Rawnsley, J., Schwachhöfer, L.:
Symplectic connection. Int. J. Geom. Methods Mod. Phys. 3 (2006), 375–426, arXiv:math/0511194.
DOI 10.1142/S021988780600117X |
MR 2232865
[5] Bruce, A.J.: Contact structures and supersymmetric mechanics. arXiv:1108.5291 [math-ph].
[6] Čap, A., Slovák, J.:
[11] Fox, D.J.F.:
Contact projective structures. Indiana Univ. Math. J. 54 (2005), 1547–1598, arXiv:math/0402332.
MR 2189678 |
Zbl 1093.53083
[12] Fradkin, E.S., Vilkovisky, G.:
Quantization of relativistic systems with constraints. Phys. Lett. B 55 (1975), 224–226, I.A. Batalin and G.A. Vilkovisky, Relativistic s-matrix of dynamical systems with boson and fermion constraints, Phys. Lett. B 69 (1977), 309–312; E.S. Fradkin and T. Fradkina, Phys. Lett. B 72 (1978), 343–348; I. Batalin and E.S. Fradkin, La Rivista del Nuovo Cimento 9 (1986), 1–48.
DOI 10.1016/0370-2693(75)90448-7 |
MR 0411451
[13] Geiges, H.:
An Introduction to Contact Topology. Cambridge University Pres, 2008, and P. Ševera, Contact geometry in lagrangian mechanics, J. Geom. Phys. 29 (1999), 235–242; A. Bravetti, C.S. Lopez-Monsalvo and F. Nettel, Contact symmetries and Hamiltonian thermodynamics, Ann. Phys. 361 (2015), 377-400, arXiv:1409.7340; A. Bravetti, H. Cruz and D. Tapias, Contact Hamiltonian dynamics, arXiv:1604.08266[math-ph].
MR 3388763
[14] Grigoriev, M.A., Lyakhovich, S.L.:
Fedosov Deformation Quantization as a BRST Theory. Comm. Math. Phys. 218 (2001), 437–457, hep-th/0003114. See also G. Barnich and M. Grigoriev, A. Semikhatov and I. Tipunin, Parent Field Theory and Unfolding in BRST First-Quantized Terms, 260, (2005), 147–181, hep-th/0406192.
DOI 10.1007/PL00005559 |
MR 2175993
[15] Gukov, S., Witten, E.:
Branes and quantization. Adv. Theor. Math. Phys. 13 (2009), 1445–1518, arXiv:0809.0305 [hep-th].
MR 2672467
[19] Krýsl, S.:
Cohomology of the de Rham complex twisted by the oscillatory representation. Differential Geom. Appl. 33 (2014), 290–297, arXiv:1304.5704 [math.DG].
DOI 10.1016/j.difgeo.2013.10.007 |
MR 3159964
[21] Manin, Y.:
Topics in Noncommutative Geometry. M. B. Porter Lectures, Princeton University Press, Princeton, NJ, 1991.
MR 1095783 |
Zbl 0724.17007
[23] Schwarz, A.S.:
Superanalogs of symplectic and contact geometry and their applications to quantum field theory. Topics in statistical and theoretical physics, vol. 177, Amer. Math. Soc. Transl. Ser. 2, 1996, Adv. Math. Sci., 32, arXiv:hep-th/9406120, pp. 203–218.
MR 1409176
[24] Yoshioka, A.:
Contact Weyl manifold over a symplectic manifold. Lie groups, geometric structures and differential equations – one hundred years after Sophus Lie. Adv. Stud. Pure Math. 37 (2002), 459–493, A. Yoshioka, Il Nuov. Cim. 38C (2015), 173.
MR 1980911